История развития геометрии

Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

Подобные документы

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа, добавлен 24.11.2009

  • Понятия сферической геометрии, соответствие между сферической геометрией и планиметрией. Применение сферической тригонометрии в навигации. Углы сферического многоугольника, анализ планиметрических аксиом. Теорема косинусов для сферических треугольников.

    курсовая работа, добавлен 06.12.2011

  • Проведение исследования на уроках обобщающего повторения курса математики в контексте ведущего понятия "порядковая структура". Примеры алгебраических и геометрических бинарных отношений. Включение учащихся в исследовательскую и проектную деятельность.

    курсовая работа, добавлен 01.12.2014

  • Зависимость строения пленки и поверхностного натяжения. Решение задачи Плато для сложного контура. Принцип минимума энергии. Теория многогранников. Особенности строения контуров и натяжения мыльных пленок. Изучение строения мыльной пены в геометрии.

    презентация, добавлен 24.04.2016

  • Исследование понятия "форма" в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.

    реферат, добавлен 20.08.2009

  • Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.

    дипломная работа, добавлен 28.10.2012

  • Предмет и задачи планиметрии, как раздела геометрии, в котором изучаются такие фигуры на плоскости, как точка, прямая, параллелограмм, трапеция, окружность и треугольник. Аксиомы принадлежности, расположения, измерения, откладывания, параллельности.

    презентация, добавлен 22.10.2013

  • Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.

    курсовая работа, добавлен 27.08.2012

  • Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.

    курсовая работа, добавлен 04.11.2015

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка, добавлен 24.08.2009

  • Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.

    реферат, добавлен 29.05.2010

  • Некоторые биографические данные и легенды из жизни Евклида. Основание математической школы и изложение геометрии в труде "Начала", описание метрических свойств пространства и его бесконечности. Сочинения "Оптика" и "Катоптрика" и изобретение монохорда.

    презентация, добавлен 21.12.2010

  • Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.

    шпаргалка, добавлен 12.01.2009

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа, добавлен 16.10.2013

  • Теоретические основы аналитической геометрии, линейной алгебры и задач оптимизации. Общая характеристика плоскости и основных поверхностей второго порядка. Особенности решения систем линейных уравнений с использованием меню "Мастер функций" MS Excel.

    методичка, добавлен 05.07.2010

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа, добавлен 17.05.2010

  • Суть метода пространственной дискретизации. Основные способы замены производной первого порядка. Алгоритм метода конечных разностей. Разбиение математической модели конструкции на непересекающиеся элементы простой геометрии. Матрица контуров и сечений.

    презентация, добавлен 27.10.2013

  • Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.

    курсовая работа, добавлен 01.02.2014

  • Теоретические основы учебных исследований по математике с использованием динамических моделей. Содержание динамических чертежей. Гипотезы о свойствах заданной геометрической ситуации. Проектирование процесса обучения геометрии в общеобразовательной школе.

    курсовая работа, добавлен 26.11.2014

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций, добавлен 23.04.2011

  • Элементы алгебры и введение в математический анализ. Дифференциальное исчисление функций одной или нескольких переменных и элементы дифференциальной геометрии. Интегральное исчисление. Числовые и функциональные ряды. Кратные и криволинейные интегралы.

    дипломная работа, добавлен 09.03.2009

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация, добавлен 05.12.2010

  • Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.

    дипломная работа, добавлен 30.09.2009

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие, добавлен 04.05.2011

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.