Матрицы графов
Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.
Подобные документы
Применение интервальных графов. Алгоритмы распознавания интервальных графов: поиск в ширину, поиск в ширину с дополнительной сортировкой, лексикографический поиск в ширину, алгоритм "трех махов". Программа задания единичного интервального графа.
курсовая работа, добавлен 10.02.2017Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.
курсовая работа, добавлен 18.01.2014Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.
контрольная работа, добавлен 12.12.2013Принятие решений как особый вид человеческой деятельности. Рациональное представление матрицы игры. Примеры матричных игр в чистой и смешанной стратегиях. Исследование операций: взаимосвязь задач линейного программирования с теоретико-игровой моделью.
курсовая работа, добавлен 05.05.2010Основные способы приведения квадратичных форм к каноническому виду. Выделение полных квадратов по стандартной схеме метода Лагранжа. Запись матрицы перехода. Линейное и невырожденное преобразование координат. Метод ортогональных преобразований.
лекция, добавлен 05.09.2013Основні положення теорії графов. Алгоритм розфарбування графу методом неявного перебору. Задання графу матрицею суміжності. Особливості програмної реалізації на мові Turbo Pascal алгоритму оптимального розфарбування вершин завантаженого з файлу графа.
курсовая работа, добавлен 15.06.2014- 82. Эйлеровы графы
Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа, добавлен 23.12.2007 Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.
контрольная работа, добавлен 05.02.2009- 84. Алгебра
Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.
учебное пособие, добавлен 02.03.2009 Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.
дипломная работа, добавлен 08.08.2007Понятие квадратичной формы и способы ее записи. Действительные и недействительные, вырожденные и невырожденные формы, ранг матрицы. Знакоопределенность квадратичных форм, определение ее миноров. Критерии положительной и отрицательной определенностей.
контрольная работа, добавлен 03.08.2010Нахождение определителя матрицы. Правило вычисления определителя 3-го порядка. Тождественные преобразования в виде цепочки действий. Симметрическая разность множеств. Область определения функции. Доказание равносильности формулы путем преобразований.
контрольная работа, добавлен 13.03.2011Доказательство линейной независимости системы векторов пирамиды. Расчет длины ребра, угла между ребрами. Составление уравнения прямой и плоскости. Выполнение операций для матриц. Величина главного определителя. Поиск алгебраических дополнений матрицы.
контрольная работа, добавлен 20.03.2017- 89. Графы
Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.
курсовая работа, добавлен 16.01.2012 Понятие ранга матрицы. Модель Леонтьева многоотраслевой экономики. Свойства скалярного произведения. Разложение вектора по координатным осям. Минор и алгебраическое дополнение. Определители второго и третьего порядка. Плоскость и прямая в пространстве.
курс лекций, добавлен 30.10.2013Расчет эффективности ведения многоотраслевого хозяйства, отображение связей между отраслями в таблицах балансового анализа. Построение линейной математической модели экономического процесса, приводящей к понятию собственного вектора и значения матрицы.
реферат, добавлен 17.01.2011Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.
контрольная работа, добавлен 12.11.2012Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.
курсовая работа, добавлен 14.11.2009Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.
контрольная работа, добавлен 04.09.2010Наличие некоторого динамического объекта, т.е. объекта, меняющегося во времени, характерного для задачи управления. Линейная задача быстродействия. Свойства экспоненциала матрицы. Линейные дифференциальные уравнения с управлением, пример интегрирования.
контрольная работа, добавлен 13.03.2015Элементы теории графов. Центры и периферийные вершины графов, их радиусы и диаметры. Максимальный поток транспортировки груза и поток минимальной стоимости. Пропускная способность пути. Анализ сетей Петри, их описание аналитическим и матричным способами.
задача, добавлен 28.08.2010Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.
курсовая работа, добавлен 10.10.2011Примеры решения задач по заданию графов. Определение основных характеристик графа: диаметра, радиуса, эксцентриситета каждой вершины. Вычисление вершинного и реберного хроматического числа. Упорядоченность матричным способом и построение функции.
контрольная работа, добавлен 05.07.2014Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.
презентация, добавлен 21.09.2013Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.
курсовая работа, добавлен 15.06.2011