Введение в методы Монте-Карло

Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.

Подобные документы

  • Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.

    курсовая работа, добавлен 23.11.2015

  • Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.

    статья, добавлен 13.12.2013

  • Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.

    практическая работа, добавлен 26.12.2016

  • Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.

    курсовая работа, добавлен 28.04.2012

  • Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.

    доклад, добавлен 25.11.2010

  • Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.

    курсовая работа, добавлен 02.05.2015

  • Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.

    статья, добавлен 22.05.2017

  • Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.

    доклад, добавлен 21.03.2015

  • Основы моделирования, классификации моделей. Анализ результатов натурных и вычислительных экспериментов. Классические и поисковые методы генерации и использования псевдослучайных чисел. Имитационное и статистическое моделирование, метод Монте-Карло.

    дипломная работа, добавлен 13.10.2015

  • Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.

    курсовая работа, добавлен 06.03.2010

  • История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.

    курсовая работа, добавлен 29.08.2010

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.

    курсовая работа, добавлен 31.10.2017

  • Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.

    статья, добавлен 04.03.2012

  • Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.

    реферат, добавлен 11.03.2014

  • Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.

    контрольная работа, добавлен 10.01.2012

  • Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.

    статья, добавлен 15.01.2019

  • Разработка комплекса программ для обоснования безопасной работы ядерного реактора. Расчет пространственно-энергетического распределения нейтронов в элементах активной зоны. Решение кинетических уравнений с применением прецизионных алгоритмов Монте-Карло.

    автореферат, добавлен 03.02.2018

  • Статистическое определение выходных результатов как основная цель статистического моделирования. Табличные и алгоритмические генераторы случайных чисел. Моделирование случайного события. Моделирование случайной величины с заданным законом распределения.

    курс лекций, добавлен 16.04.2013

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Оценка качества генераторов случайных чисел. Описание конкретных проектов или исследований, в которых применялись генераторы случайных чисел: игровая индустрия и развлекательные приложения; финансовая математика и оценка рисков; моделирование и симуляция.

    курсовая работа, добавлен 04.05.2024

  • Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).

    курс лекций, добавлен 27.12.2015

  • Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.

    курсовая работа, добавлен 08.02.2016

  • Объективные и субъективные методы определения вероятности. Теория использования математической статистики, Байесовских сетей для вычисления вероятности событий. Методы экспертного анализа риска, частичного баланса, имитационные, моделирования Монте-Карло.

    статья, добавлен 24.05.2018

  • Число е - удивительный математический элемент, свойства которого можно наблюдать в решениях определённых задач и окружающем пространстве. Характеристика основных формул, применяющихся для определения данной константы. Сущность метода Монте-Карло.

    творческая работа, добавлен 26.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.