Теория игр для математического решения задач
Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
Подобные документы
Математическое определение верхней и нижней цены игры в чистых стратегиях. Расчет цены игры при оптимальных смешанных стратегиях игроков при помощи нулевой суммы и платежной матрицы. Сведение оптимальных стратегий к задаче линейного программирования.
лекция, добавлен 20.03.2013Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.
контрольная работа, добавлен 24.10.2014Рассмотрение основных способов нахождения оптимального решения матричных игр двух лиц с нулевой суммой. Общая характеристика этапов создания матрицы размерности 15х15, содержащей 6 седловых точек. Знакомство с особенностями игры с платежной матрицей.
лабораторная работа, добавлен 18.06.2020Характеристика матричных игр с нулевой суммой. Анализ платежной матрицы игры. Описание нижней и верхней цены игры, принципа минимакса. Игры с седловой и безседловой точкой. Игры, повторяемые многократно. Аналитический метод решения игр различного типа.
учебное пособие, добавлен 17.06.2015- 5. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016 Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.
реферат, добавлен 12.07.2015Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.
курсовая работа, добавлен 21.10.2013Графоаналитический метод решения матричных игр. Решение систем неравенств графическим методом и задач линейного программирования. Геометрическая интерпретация ограничений и целевой функции задачи. Решение матричных игр, используя симплекс метод.
контрольная работа, добавлен 23.01.2013Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.
презентация, добавлен 20.01.2016Позиционная дифференциальная игра "наведения–уклонения" нескольких лиц. Динамика конфликтно-управляемого объекта. Формализация игры в классе "чистых" стратегий. Теорема об альтернативе. Основные условия существования седловой точки в "маленькой игре".
статья, добавлен 26.04.2019Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.
задача, добавлен 24.02.2014Знакомство с основными особенностями теоремы Чевы и Менелая. Рассмотрение способов и методов решения решения геометрических задач. Общая характеристика примеров применения прямой, а также обратной теорем Чевы. Анализ задач для самостоятельного решения.
контрольная работа, добавлен 26.02.2020Многократное фиктивное разыгрывание игры, когда одна итерация называется партией - сущность метода Брауна-Робинсона. Теорема, которая подтверждает сходимость алгоритма. Формулы, применяющиеся для определения значения итеративных последовательностей.
статья, добавлен 25.01.2022Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.
лекция, добавлен 30.11.2016Определение точек условного экстремума, экстремальные значения функции. Порядок, принципы решения задач квадратичного программирования. Вычисление числа взлетно-посадочных полос для самолетов с учетом заданной вероятности ожидания. Решение матричных игр.
контрольная работа, добавлен 18.03.2014Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.
презентация, добавлен 10.04.2013Примеры решения задач по теории вероятности. Описание формул, которые применяются для решения таких задач. Построение группы гипотез для решения задач. Функция распределения непрерывной случайной величины. Применение равномерного закона распределения.
курсовая работа, добавлен 07.03.2019Сходимость в метрическом пространстве. Свойства линейных операторов. Основная теорема теории вычетов, ее доказательство. Дифференциальное уравнение в полных дифференциалах. Основная теория Коши для аналитической функции. Линейные ограниченные операторы.
шпаргалка, добавлен 13.06.2012Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.
реферат, добавлен 12.11.2014Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Теория игр как раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта, ее основные понятия и утверждения. Методы решения игры: Брауна-Робинсона, монотонный итеративный алгоритм.
контрольная работа, добавлен 10.05.2017Общее понятие об оригами, его применение в различных сферах жизни: для украшения праздничного стола, упаковки подарков и создания одежды. Методы решения задач с помощью оригаметрии. Основные аксиомы, доказательство теорем и примеры решения задач.
презентация, добавлен 16.01.2017Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.
задача, добавлен 16.10.2017Изучение основ теории решения изобретательских алгебраических задач, выявление их функций и областей применения. Рассмотрение примеров решения параметрических уравнений и неравенств алгебраическим, аналитическим и функционально-графическим способами.
реферат, добавлен 02.02.2014