О структурном изоморфизме множеств подмножеств структурно изоморфных множеств

Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

Подобные документы

  • Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.

    дипломная работа, добавлен 26.04.2019

  • Описание свойства транзитивности принадлежности для самопринадлежащих множеств. Доказательство теоремы о непротиворечивости теории множеств с самопринадлежностью. Алгебра скобок единого и многого. Отношение части и целого. Приложение к доказательству.

    статья, добавлен 26.04.2019

  • Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.

    статья, добавлен 26.04.2019

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.

    контрольная работа, добавлен 25.06.2012

  • Изображение декартового произведения множеств на координатной плоскости. Отражение отношения между множествами на кругах Эйлера. Разбиение множества на классы. Операция объединения и операция пересечения множеств. Декартово произведение n-множеств.

    контрольная работа, добавлен 28.04.2016

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.

    лекция, добавлен 25.12.2016

  • Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.

    контрольная работа, добавлен 21.09.2017

  • Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.

    лекция, добавлен 28.04.2015

  • Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.

    реферат, добавлен 18.02.2012

  • Множества и операции над ними. Представление множеств и отношений в программах. Алгоритмы генерации множеств и задачи информационного поиска. Алгоритм выполнения операции минимум. Бинарное поисковое дерево. Генерация всех подмножеств универсума.

    контрольная работа, добавлен 23.04.2013

  • Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.

    автореферат, добавлен 19.08.2018

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Основные свойства изоморфных подгрупп некоторой абстрактной группы G – циклического изоморфизма. Рассмотрение примера матричного представления циклического изоморфизма четвертого уровня. Простейшие решения системы уравнений циклического изоморфизма.

    статья, добавлен 03.05.2012

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

    статья, добавлен 24.11.2022

  • Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.

    курс лекций, добавлен 28.03.2012

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

    реферат, добавлен 08.10.2012

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.