Елементи комбінаторики та теорії імовірності

Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).

Подобные документы

  • Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).

    презентация, добавлен 21.03.2014

  • Випадкові події та означення ймовірності. Основні формули додавання і множення ймовірностей. Незалежні повторні випробування, формула Бернуллі. Дискретні випадкові величини та їх числові характеристики. Статистична перевірка статистичних гіпотез.

    методичка, добавлен 02.12.2015

  • Класичне визначення ймовірності, умовна ймовірність. Зв'язок теорії ймовірностей з теорією множин. Теореми про додавання та множення ймовірностей довільних, несумісних та незалежних подій. Сутність теорем та формул Лапласа, Байєса, Бернуллі, Пуассона.

    реферат, добавлен 16.12.2010

  • Походження комплексних чисел. Їх дійсна і уявна частина. Гіперболічні функції та їх зв’язок із тригонометричними функціями. Основні властивості комбінацій. Класичне означення імовірності. Теорема додавання ймовірностей сумісних і несумісних подій.

    курс лекций, добавлен 25.01.2014

  • Основні елементи та принципи комбінаторики: принцип суми і добутку, їх характеристика. Особливості перестановки елементів, розміщення та комбінацій (їх властивостей). Поняття біному Ньютона, формули включень і виключень та їх основна характеристика.

    реферат, добавлен 26.11.2014

  • Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.

    контрольная работа, добавлен 07.12.2011

  • Основні поняття теорії ймовірностей. Види випадкових подій. Статистичне означення ймовірності. Найпростіші теореми теорії ймовірностей. Закон Пуасcона або закон рідкісних подій. Математичне сподівання та характеристики дискретної випадкової величини.

    реферат, добавлен 19.07.2017

  • Класичне і статистичне означення ймовірності. Теореми Лапласа, формула Пуассона. Відхилення відносної частоти від сталої імовірності в незалежних випробуваннях. Найімовірніше число появ події. Числові характеристики дискретних випадкових величин.

    учебное пособие, добавлен 14.07.2017

  • Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.

    реферат, добавлен 05.05.2011

  • Вивчення теорії ймовірностей, імовірнісних процесів і математичної статистики. Огляд функції, щільності розподілу випадкової величини та їх властивостей на підставі центральної граничної теореми. Аналіз розподілу Вейбулла і його практичного застосування.

    контрольная работа, добавлен 28.02.2011

  • Формули множення ймовірностей для залежних та незалежних випадкових подій. Локальна та інтегральна теореми Мавра-Лапласа. Формула Пуассона малоймовірних випадкових подій. Нерівності Чебишова та її значення. Теорема Бернулі. Біноміальний закон розподілу.

    шпаргалка, добавлен 19.01.2014

  • Виведення формули Бернуллі. Найбільш імовірне число появи подій при повторних випробуваннях. Випадкові дискретні та неперервні величини, їх характеристики і закони розподілу ймовірностей. Функція щільності розподілу та парадокс теорії ймовірностей.

    презентация, добавлен 21.03.2014

  • Множення вектора на речове число. Упорядковані набори речовинних чисел. Додавання і множення векторів на число. Комплексний безкінечномірний векторний простір. Визначений скалярний добуток. Елементи векторного простору та поняття полей скалярів.

    реферат, добавлен 11.09.2011

  • Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.

    реферат, добавлен 03.05.2022

  • Провідна роль методу математичної індукції у вищій математиці. Повна і неповна індукція. Помилки в індуктивних міркуваннях. Принцип математичної індукції. Узагальнення принципу математичної індукції. Приклад доведення методом математичної індукції.

    курсовая работа, добавлен 14.08.2008

  • Геометричне зображення суми і різниці комплексних чисел. Математичний алгоритм переходу із тригонометричної форми в алгебраїчну і навпаки. Методика побудови таблиці Келі для операції множення. Доведення формули Муавра методом математичної індукції.

    учебное пособие, добавлен 06.11.2015

  • Характеристика прикладів числових множин. Особливості застосування похідної для доведення рівностей та нерівностей. Етапи побудови графіка функцій. Аналіз формул Ньютона-Лейбніца. Розгляд основних понять теорії ймовірностей та елементів комбінаторики.

    книга, добавлен 16.10.2012

  • Середнє значення випадкової величини та його властивості. Середні значення функції випадкового вектора. Математичне сподівання випадкових величин, розподілених за найбільш поширеними законами розподілу. Дисперсія випадкової величини та її властивості.

    реферат, добавлен 12.03.2011

  • Дискретні і неперервні випадкові величини, чисельні характеристики. Дисперсія та її властивості, стандартні розподіли випадкових величин. Медіана, мода, асиметрія та ексцес випадкової величини. Функція одного, від двох або більше випадкових аргументів.

    контрольная работа, добавлен 09.06.2010

  • Принципи побудови моделей. Алгоритм обчислення характеристик з необмеженою чергою методом статистичного моделювання. Дослідження характеристик черги в нестаціонарному випадку. Обчислення ймовірностей станів системи. Елементи теорії відновлення.

    дипломная работа, добавлен 25.08.2010

  • Математичне сподівання дискретної випадкової величини. Ймовірнісний зміст і властивості математичного сподівання. Оцінка розсіювання можливих значень випадкової величини навколо її середнього значення. Середнє квадратичне відхилення випадкової величини.

    методичка, добавлен 07.04.2014

  • Особливості розбудови матриці відношення. Основні принципи оперування елементами теорії множин. Алгоритм проведення операцій над множинами, основні властивості відношень і реалізація операцій над множинами засобами програмування за допомогою мови C++.

    лабораторная работа, добавлен 28.10.2012

  • Вивчення поняття випадкової і дискретної випадкової величин, що приймають ізольовані один від одного значення, які можна перерахувати. Визначення математичного сподівання, середньоквадратичного відхилення і дисперсії для неперервних випадкових величин.

    контрольная работа, добавлен 23.03.2011

  • Особливості трактування основних понять та розрахунку граничних теорем для схеми Бернуллі. Характеристика особливостей побудови графіка до функції Лапласа. Сутність теореми Бернуллі про стійкість відносних частот та ймовірності появи випадкових частот.

    контрольная работа, добавлен 12.11.2012

  • Математичне сподівання випадкової величини та його найпростіші властивості. Дисперсія, характеристика розсіювання значень відносно центра розподілу. Момент випадкової величини. Числові характеристики основних законів розподілу. Ймовірність відхилення.

    реферат, добавлен 23.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.