История введения в школьный курс математики темы "Иррациональные числа"

История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.

Подобные документы

  • Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.

    реферат, добавлен 02.04.2022

  • Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.

    реферат, добавлен 13.12.2022

  • Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.

    курсовая работа, добавлен 26.12.2011

  • Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.

    реферат, добавлен 27.03.2015

  • Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.

    реферат, добавлен 12.11.2016

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.

    контрольная работа, добавлен 22.01.2011

  • Понятие "комплексные числа": история их возникновения и роль в процессе развития математики. Действия над двумерными числами и их значение для физики и техники. Процесс расширения понятий этой категории математики от натуральных к действительным.

    реферат, добавлен 07.06.2013

  • Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.

    курсовая работа, добавлен 07.06.2014

  • Основные этапы развития математики. Особенности математики в различных странах. Значимость математики в нынешнее время. Возникновение арифметики и геометрии. Формирование понятия геометрической фигуры и числа. Крупное количество счета.

    презентация, добавлен 09.11.2016

  • Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.

    доклад, добавлен 11.01.2012

  • Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.

    курсовая работа, добавлен 26.09.2009

  • Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.

    реферат, добавлен 21.08.2017

  • Теоретические основы этноориентированного обучения математики в общеобразовательной школе. Выявление необходимости реализации этноориентированного обучения на уроках математики. Задачи с этнорегиональным содержанием при изучении темы "Целые числа".

    контрольная работа, добавлен 12.06.2021

  • Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.

    презентация, добавлен 10.11.2019

  • Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

    реферат, добавлен 15.12.2016

  • Содержательные основы концепции философии числа пифагорейцев. Стадии формирования математических учений Платона и Аристотеля. Определение числовой гармонии. Значение теоретических подходов к вещественности числа для философии математики Аристотеля.

    статья, добавлен 04.02.2017

  • Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Основное логарифмическое тождество. Свойства десятичного и натурального логарифма. Расчет логарифма корня, который равен логарифму подкоренного числа.

    контрольная работа, добавлен 28.10.2013

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • История возникновения математической константы, выражающей отношение длины окружности к ее диаметру, ее значение для науки. Понятие геометрического и классического периода вычисления числа пи. Сущность формул Ф. Виета, Д. Валлиса, Д. Мэчина и Л. Эйлера.

    презентация, добавлен 24.02.2015

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.

    конспект урока, добавлен 19.09.2018

  • Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.

    конспект урока, добавлен 20.09.2018

  • История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.

    контрольная работа, добавлен 30.01.2010

  • Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.

    курс лекций, добавлен 02.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.