Задачі побудови простого ланцюга графа для зв’язаних серединних умов

Розгляд задачі побудови максимального простого ланцюга графа. Означення серединних умов типу 4 і 5 для випадку взаємної залежності вершин. Формулювання твердження про властивості конструктивної повноти зв’язаних серединних умов щодо вершин і шляхів.

Подобные документы

  • Сущность и функции графа. Связь между помеченными и непомеченными графами. Связность любой пары вершин графа простой цепью. Компонента графа. Метрические характеристики графа. Теорема Д. Кенига. Ориентированный, неориентированный помеченный граф (орграф).

    презентация, добавлен 15.09.2017

  • Понятие и определение графа, геометрическое изображение его вершин и элементов. Сущность маршрута в графе, простой и замкнутый циклы. Доказательство алгоритма Беллмана, построение блок-схемы нахождения расстояния от источника до всех вершин графа.

    курсовая работа, добавлен 24.04.2011

  • Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.

    реферат, добавлен 27.03.2011

  • Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

    задача, добавлен 11.09.2012

  • Определение кратчайших путей от вершины до остальных вершин графа, используя алгоритмы Дейкстры и Беллмана. Определение кратчайших путей между всеми парами вершин графа с применением алгоритма Флойда. Программирование алгоритма дискретной математики.

    курсовая работа, добавлен 12.11.2017

  • Методика определения хроматического числа неориентированного графа. Пример графа для иллюстрации логики нахождения правильной раскраски. Характеристика метода нахождения пути минимального окрашивания, который основан на решении задачи о покрытии.

    презентация, добавлен 25.09.2017

  • Графічне зображення графа та інші способи його представлення, відношення інцидентності. Дослідження оптимального шляху графа. Проведення синтезу графа, визначення ваги ребер та індексів вершин, що має задану структуру та заданий оптимальний шлях.

    лабораторная работа, добавлен 06.06.2015

  • Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.

    автореферат, добавлен 28.07.2014

  • Формулювання просторової сингулярно збуреної крайової задачі для системи нелінійних рівнянь трикомпонентного конвективно-дифузійного масопереносу розчинних у фільтраційній течії речовин за умов малих дифузії. Аналіз асимптотичного розвинення її розв’язку.

    статья, добавлен 29.07.2016

  • Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.

    доклад, добавлен 29.12.2014

  • Визначення головних умов наявностi властивостей iнерцiї та зменшення розмiрiв носiя. Характеристика особлиовстей умов, якi гарантують наявнiсть локалiзацiї та обмеженостi розв’язків задачі Коши-Неймана для параболiчних рiвнянь загального вигляду.

    автореферат, добавлен 05.01.2014

  • Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.

    контрольная работа, добавлен 24.04.2011

  • Означення квадратичної функції. Порядок знаходження координат вершин параболи та нулів функції. Визначення напряму віток та виконання побудови графіка квадратичної функції. Її властивості, проміжки зростання та спадання, найбільше та найменше значення.

    презентация, добавлен 12.05.2016

  • Основні означення та властивості графів. Використання матриць інцилентності та суміжності для подання графі. Подання графа списками пар і суміжності. Розгляд ейлерової ломиголовки "Кенігзберзьких мостів". Алгоритм Флері побудови ейлерового циклу.

    курсовая работа, добавлен 27.09.2017

  • Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.

    контрольная работа, добавлен 29.08.2010

  • Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.

    автореферат, добавлен 29.07.2014

  • Застосування методів оптимізації в нафтопереробній промисловості. Пошук мінімального дерева Штейнера. Аналіз розподілу множини вершин графа на сукупність оболонок та їх сполучення. Розробка програмного забезпечення для розв’язання задачі комівояжера.

    статья, добавлен 26.03.2016

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.

    статья, добавлен 12.06.2016

  • Розгляд білінійності форми, яка не задовольняє умов розв’язності еволюційних об’єктів. Вирішення задачі оптимального керування для виродженої варіаційної нерівності типу Харді-Пуанкаре. Врахування однорідних початкових умов і властивостей вагової функції.

    статья, добавлен 14.09.2016

  • Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".

    методичка, добавлен 15.10.2016

  • Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.

    курсовая работа, добавлен 21.04.2012

  • Побудова трикутних операторів перетворення для систем диференціальних рівнянь. Визначення необхідних умов повноти системи кореневих функцій оператора Штурма-Ліувілля з виродженими крайовими умовами. Розв'язок оберненої задачі за спектральною матрицею.

    автореферат, добавлен 20.07.2015

  • Дослідження проблеми знаходження конструктивних умов існування та побудові розв'язків нелінійних нетерових крайових задач для систем диференціальних рівнянь. Способи побудови модифікованих ітераційних процедур з використанням техніки найменших квадратів.

    автореферат, добавлен 20.07.2015

  • Основні методи геометричних побудувань: геометричного місця точок, перетворення, алгебраїчний. Використання методів конструктивної геометрії для побудови геометричних фігур за допомогою лінійки, циркуля, подвійної лінійки, гострого та прямого кутів.

    дипломная работа, добавлен 07.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.