Комплексні числа

Виникнення раціональних та негативних чисел. Проблеми рішень квадратних рівнянь. Визначення, математичні дії та оцінка справедливості рівностей для комплексних чисел. Тригонометричні, гіперболічні та логарифмічні функції. Доведення формули Ейлера.

Подобные документы

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Походження комплексних чисел. Їх дійсна і уявна частина. Гіперболічні функції та їх зв’язок із тригонометричними функціями. Основні властивості комбінацій. Класичне означення імовірності. Теорема додавання ймовірностей сумісних і несумісних подій.

    курс лекций, добавлен 25.01.2014

  • Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.

    контрольная работа, добавлен 16.07.2017

  • Геометричне зображення суми і різниці комплексних чисел. Математичний алгоритм переходу із тригонометричної форми в алгебраїчну і навпаки. Методика побудови таблиці Келі для операції множення. Доведення формули Муавра методом математичної індукції.

    учебное пособие, добавлен 06.11.2015

  • Дослідження застосування звичайних комплексних, дуальних і подвійних чисел, аналіз різниці між ними. Комплексне обґрунтування сутності поняття "комплексні числа". Застосування до вивчення геометричних перетворень та розв’язування геометричних задач.

    курсовая работа, добавлен 19.04.2017

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.

    учебное пособие, добавлен 17.02.2022

  • Зміст дії ділення та правил множення раціональних чисел. Формулювання основних правил ділення раціональних чисел. Способи вироблення у учнів вмінь застосовувати ці правила для розв'язування вправ, що передбачають виконання ділення раціональних чисел.

    конспект урока, добавлен 17.09.2018

  • Відкриття несумірності діагоналі квадрата з його стороною. Виникнення проблем ірраціонального та трансцендентного числа. Методи встановлення ірраціональності чисел. Границі дробів, що мають ірраціональність. Означення та властивості трансцендентних чисел.

    курсовая работа, добавлен 28.11.2013

  • Розв’язання бінарної проблеми Гольдбаха методом тригонометричних сум. Знаходження асимптотичної формули розподілу парних чисел, утворених сумою двох простих непарних чисел. Використання методу І. Виноградова для доведення тернарної проблеми Гольдбаха.

    статья, добавлен 29.01.2016

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.

    статья, добавлен 03.03.2018

  • Поняття оберненої функції. Властивості тригонометричної аркфункції, застосування її властивостей до розв'язування вправ. Утворення назви оберненої тригонометричної функції. Графіки функції, тригонометричні рівняння. Обчислення арккосинуса від'ємних чисел.

    презентация, добавлен 14.11.2018

  • Поняття, позначення і способи завдання функції. Побудова графіків функції, система координат статичного графіка функції. Логарифмічні числа, натуральний і десятковий логарифми, логарифмічна безліч. Тригонометричні функції круга і числового елементу.

    учебное пособие, добавлен 27.11.2013

  • Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.

    лекция, добавлен 08.08.2014

  • Поняття рівних, спряжених і протилежних комплексних чисел, їх геометричне зображення. Дії над комплексними числами в тригонометричній та показниковій формі. Операції множення, ділення, піднесення до степеня та добування кореня для модуля та аргументу.

    контрольная работа, добавлен 03.06.2013

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Радіанне вимірювання кутів, формули переходу від градусної до радіанної міри. Поняття синуса, косинуса і котангенса. Тригонометричні функції числового аргументу, визначення кутів з прямокутного трикутника. Співвідношення між тригонометричними функціями.

    презентация, добавлен 04.12.2016

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.

    контрольная работа, добавлен 22.01.2011

  • Розгляд основних прикладів застосування чисел Фібоначчі в геометрії і демонстрації використання формули Біне на факультативних та гурткових заняттях з математики. Оцінка характеристики чисел Фібоначчі та золотої пропорції як "діамантів" математики.

    статья, добавлен 14.07.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.