Задачі на складання системи рівнянь та нерівностей
Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
Подобные документы
Вирішення тригонометричних рівнянь у шкільному курсі математики: методичні особливості вивчення теми. Числові функції та їх властивості. Втрачанні та сторонні корені, перевірка знайдених розв’язків. Приклади розрахунків із складними нерівностями.
курсовая работа, добавлен 21.05.2009Проведено математичне дослідження коректності задач для псевдопараболічних систем рівнянь та варіаційних нерівностей і властивостей розв’язків цих задач, за допомогою аналогу методу Гальоркіна, методів штрафу, регуляризації, монотонності та компактності.
диссертация, добавлен 27.04.2014Історія виникнення та властивості логарифмів, їх зв'язок з показниковою функцією. Розгляд способів рішення логарифмічних рівнянь й нерівностей, аналіз типових складностей при їх розв’язанні. Застосування конкретно-індуктивного методу на уроках алгебри.
статья, добавлен 27.11.2019- 4. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Розгляд систем лінійних рівнянь. Рядки і стовпці матриці, їх функції. Критерій сумісності, визначеності системи лінійних рівнянь. Рядковий і стовпцевий ранги матриці. Розв’язання системи лінійних рівнянь методом послідовного виключення невідомих.
лекция, добавлен 16.07.2017Викладення прикладів застосування диференціальних рівнянь у великій кількості математичних моделей, явищ і процесах у різних галузях науки (біології, фізиці). Розв’язання задач на знаходження кривої, яка проходить через певну точку; швидкості та відстані.
лекция, добавлен 30.04.2014Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014Дослідження особливостей узагальненого методу відокремлення змінних задач з локальними багатоточковими умовами за часом і задач Коші для полілінійних диференціальних рівнянь та полілінійних систем диференціальних рівнянь із частинними похідними.
автореферат, добавлен 15.07.2014Дослідження еволюції підходів до вирішення коректності математичних задач. Доведення теореми неперервний лінійний. Перевірка правильності рівнянь другого порядку з частинними похідними та виконання умов леми. Розгляд теорії функціональних рівнянь.
реферат, добавлен 17.06.2014Нелінійні еліптичні рівняння в необмежених областях, для яких задача Діріхле і Неймана мають єдиний загальний розв'язок без припущень на його поведінку і зростання вихідних даних на нескінченності за рахунок рівнянь зі змінними показниками нелінійності.
автореферат, добавлен 24.07.2014Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.
презентация, добавлен 21.03.2014Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.
автореферат, добавлен 10.08.2014Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
контрольная работа, добавлен 24.01.2018Вироблення вмінь застосування властивостей рівносильності рівнянь. Приклади розв'язування рівнянь, що містять дроби (раціональні або звичайні). Завдання на виконання множення обох частин рівняння на одне й те саме число та позбавлення дробових чисел.
конспект урока, добавлен 26.09.2018Дослідження теорем метричного характеру про оцінки знизу малих знаменників, які виникли при побудові формальних розв'язків задач. Аналіз задач з інтегральними умовами для рівнянь із частинними похідними зі змінними коефіцієнтами гіперболічного типу.
автореферат, добавлен 30.07.2015- 17. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Методика побудови узагальненого оператора Гріна для лінійних систем диференціальних рівнянь із імпульсним впливом. Розв’язок нетерової слабконелінійної крайової задачі для системи звичайних диференціальних рівнянь за алгоритмом Ньютона–Канторовича.
автореферат, добавлен 28.08.2015Умови існування та єдиності розв'язків мішаних задач та задач без початкових умов для деяких типів еволюційних рівнянь та систем. Існування та єдиність розв'язків для нелінійних ультрапараболічних рівнянь в необмежених за просторовими змінними областях.
автореферат, добавлен 15.07.2014Розгляд крайової задачі для системи диференціальних рівнянь з імпульсним впливом у фіксовані моменти часу з параметрами та додатковими умовами. Побудова ітераційного і проекційно-ітеративного методів знаходження наближених розв’язків лінійної задачі.
автореферат, добавлен 28.07.2014Дослідження вироджених нелінійних різницевих рівнянь у банахових просторах. Побудова обмеженого напівінваріантного многовиду та наближене відшукання періодичних розв’язків рівнянь вказаного типу. Приклади лінійних різницевих рівнянь у просторі m.
автореферат, добавлен 09.08.2014Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012- 23. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 - 24. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 Вивчення задач з невідомими межами для гіперболічних систем квазілінійних рівнянь першого порядку щодо їхньої локальної й глобальної розв'язності. Рішення гіперболічної задачі Стефана з нелокальними крайовими умовами для системи квазілінійних рівнянь.
автореферат, добавлен 19.07.2015