Понятие, предмет и задачи эконометрики
Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
Подобные документы
Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.
контрольная работа, добавлен 03.01.2012Предмет и задачи эконометрического моделирования. Построение парных и множественных регрессионных моделей экономических процессов. Анализ модели множественной линейной регрессии. Характеристика особенностей эконометрических моделей интегрированного типа.
методичка, добавлен 14.05.2017Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Предмет, цели и задачи эконометрики. Применение математических уравнений и моделей в эконометрики. Становление и развитие эконометрических методов. Применение множественной регрессии начале XX века. Данные для моделирования экономических процессов.
контрольная работа, добавлен 09.10.2011Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.
курсовая работа, добавлен 14.12.2015Понятие "эконометрика", ее задачи, предмет и метод. Сбор и подготовка информации для расчета уравнения регрессии. Методика построения моделей эконометрического типа. Оценка прогнозных свойств эконометрической модели. Применение в управлении экономикой.
реферат, добавлен 04.03.2018Три основных класса моделей, которые применяются для анализа и прогноза в эконометрике. Понятие о временных рядах и их виды. Решение задач определения парной и множественной регрессии. Использование независимых переменных в регрессионных моделях.
учебное пособие, добавлен 01.06.2013Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.
практическая работа, добавлен 16.05.2013Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015Основные элементы эконометрической модели. Спецификация модели парной линейной регрессии. Основные предположения регрессионного анализа. Коэффициенты детерминации и парной корреляции. Проверка статистической значимости в парной линейной регрессии.
реферат, добавлен 27.12.2016- 13. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Понятие и виды нелинейных моделей регрессии. Приведение нелинейной функции к линейному виду с помощью замены переменных и логарифмирования. Анализ влияния уровня инфляции на количество безработных с помощью парной нелинейной регрессии и линеаризации.
курсовая работа, добавлен 22.05.2012Построение парной и множественной регрессионных эконометрических моделей. Экономическая интерпретация моделей. Временные ряды в эконометрических исследованиях. Использование первой гармоники ряда Фурье. Составление матрицы переходных вероятностей.
контрольная работа, добавлен 01.11.2010Корреляционные поля и цель их построения. Коэффициенты уравнения парной линейной регрессии. Связь между коэффициентами регрессии и корреляции. Определение параметров парной линейной регрессии. Графическое представление уравнения парной линейной регрессии.
реферат, добавлен 30.01.2013Уравнение линейной парной регрессии одного признака от другого. Расчет линейного коэффициента парной корреляции и коэффициента детерминации. Уравнение множественной регрессии, выбор факторов. Автокорреляция уровней временного ряда, его структура.
контрольная работа, добавлен 21.01.2013Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.
учебное пособие, добавлен 07.05.2015Возможности корреляционно-регрессионных моделей в анализе эффективности производства сельхозпредприятий. Нестандартные случаи интерпретации параметров адаптации уравнений регрессии. Оценка эффективности использования факторов, ресурсов и мероприятий.
статья, добавлен 25.11.2017Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.
контрольная работа, добавлен 14.06.2011Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
контрольная работа, добавлен 14.04.2021Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.
контрольная работа, добавлен 26.02.2010