Как решают нестандартные задачи

Подборка задач олимпиадного и исследовательского типов, которые сгруппированы по классам. Доказательство от противного. Описание метода крайнего. Уход на бесконечность и малые шевеления. Принцип Дирихле, алгоритм Евклида, индукция. Делимость и остатки.

Подобные документы

  • Основные черты задачи Дирихле для уравнения Пуассона и необходимость применения сеточной функции. Сущность Чебышевского метода, его обоснование и применение на практике. Характеристика основных задач метода простой итерации при заданном числе узлов.

    презентация, добавлен 30.10.2013

  • Доказательство теоремы о 5-ом постулате Евклида как следствия его первых трех постулатов с использованием доводов, имеющих форму доказательства от противного, методом доведения до абсурда. Сферическое пространство Римана и плоскости Лобачевского.

    статья, добавлен 29.08.2016

  • Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.

    статья, добавлен 03.03.2018

  • Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.

    реферат, добавлен 15.12.2011

  • Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.

    курсовая работа, добавлен 19.06.2012

  • Краткая биография немецкого математика, специалиста в сфере комбинаторики, дискретных объектов и теории чисел - Петера Густава Лежен Дирихле. Формулировки и сфера применения законов, открытых математиком. Методика решения задач по принципу Дирихле.

    презентация, добавлен 15.05.2014

  • Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.

    статья, добавлен 29.04.2017

  • Понятие параллельных линий по определению Евклида. Метод доказательства от противного Саккери. Мнение Гаусса о недоказуемости аксиомы Евклида. Заключение о существовании абсолютной меры Ламберта. Исследования Лобачевского, теория относительности.

    реферат, добавлен 30.06.2011

  • Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.

    курсовая работа, добавлен 13.10.2017

  • Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.

    статья, добавлен 03.03.2018

  • Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.

    статья, добавлен 03.03.2018

  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат, добавлен 06.04.2009

  • Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.

    контрольная работа, добавлен 24.11.2012

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.

    учебное пособие, добавлен 12.09.2013

  • Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.

    статья, добавлен 27.05.2018

  • Доказательство алгебраичности значений радиальных производных для одного класса степенных рядов, являющихся результатом их произведения по Дирихле. Ряды Дирихле с периодическими алгебраическими коэффициентами, имеющими ограниченную сумматорную функцию.

    статья, добавлен 31.05.2013

  • Доказательство единственности положительного радиально-симметричного решения задачи Дирихле в кольцевой области для одного класса нелинейных уравнений второго порядка. Анализ вопросов существования положительного решения, его поведения, априорных оценок.

    статья, добавлен 31.05.2013

  • Правила деления многочленов и их представление в канонической форме. Нахождение наибольшего общего делителя двух многочленов и двух натуральных чисел. Возможности упрощения вычислений наибольшего общего делителя в алгоритме Евклида, примеры решения задач.

    контрольная работа, добавлен 26.10.2012

  • Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.

    контрольная работа, добавлен 17.09.2009

  • Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.

    реферат, добавлен 19.07.2016

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • Рассмотрение задачи Дирихле и доказывание достаточных условий ей однозначной разрешимости для абстрактного уравнения Бесселя-Струве. Установление равномерной корректности задачи Коши для уравнения Бесселя-Струве. Определение операторной функции Бесселя.

    статья, добавлен 01.02.2019

  • Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.

    презентация, добавлен 16.10.2014

  • Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.

    статья, добавлен 03.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.