Как решают нестандартные задачи
Подборка задач олимпиадного и исследовательского типов, которые сгруппированы по классам. Доказательство от противного. Описание метода крайнего. Уход на бесконечность и малые шевеления. Принцип Дирихле, алгоритм Евклида, индукция. Делимость и остатки.
Подобные документы
Основные черты задачи Дирихле для уравнения Пуассона и необходимость применения сеточной функции. Сущность Чебышевского метода, его обоснование и применение на практике. Характеристика основных задач метода простой итерации при заданном числе узлов.
презентация, добавлен 30.10.2013Доказательство теоремы о 5-ом постулате Евклида как следствия его первых трех постулатов с использованием доводов, имеющих форму доказательства от противного, методом доведения до абсурда. Сферическое пространство Римана и плоскости Лобачевского.
статья, добавлен 29.08.2016Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.
статья, добавлен 03.03.2018Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.
курсовая работа, добавлен 19.06.2012Краткая биография немецкого математика, специалиста в сфере комбинаторики, дискретных объектов и теории чисел - Петера Густава Лежен Дирихле. Формулировки и сфера применения законов, открытых математиком. Методика решения задач по принципу Дирихле.
презентация, добавлен 15.05.2014Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
статья, добавлен 29.04.2017Понятие параллельных линий по определению Евклида. Метод доказательства от противного Саккери. Мнение Гаусса о недоказуемости аксиомы Евклида. Заключение о существовании абсолютной меры Ламберта. Исследования Лобачевского, теория относительности.
реферат, добавлен 30.06.2011Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.
статья, добавлен 03.03.2018Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.
статья, добавлен 03.03.2018Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.
учебное пособие, добавлен 28.12.2013- 15. Математика ЕГЭ
Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.
учебное пособие, добавлен 12.09.2013 - 16. Алгоритм комбинированного метода решения конечноэлементных задач с нелинейностями различного типа
Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.
статья, добавлен 27.05.2018 Доказательство алгебраичности значений радиальных производных для одного класса степенных рядов, являющихся результатом их произведения по Дирихле. Ряды Дирихле с периодическими алгебраическими коэффициентами, имеющими ограниченную сумматорную функцию.
статья, добавлен 31.05.2013Доказательство единственности положительного радиально-симметричного решения задачи Дирихле в кольцевой области для одного класса нелинейных уравнений второго порядка. Анализ вопросов существования положительного решения, его поведения, априорных оценок.
статья, добавлен 31.05.2013Правила деления многочленов и их представление в канонической форме. Нахождение наибольшего общего делителя двух многочленов и двух натуральных чисел. Возможности упрощения вычислений наибольшего общего делителя в алгоритме Евклида, примеры решения задач.
контрольная работа, добавлен 26.10.2012Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
контрольная работа, добавлен 17.09.2009Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.
реферат, добавлен 19.07.2016Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.
курсовая работа, добавлен 03.05.2014Рассмотрение задачи Дирихле и доказывание достаточных условий ей однозначной разрешимости для абстрактного уравнения Бесселя-Струве. Установление равномерной корректности задачи Коши для уравнения Бесселя-Струве. Определение операторной функции Бесселя.
статья, добавлен 01.02.2019Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.
презентация, добавлен 16.10.2014Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.
статья, добавлен 03.03.2018