Фрактальный анализ сложных текстурных изображений
Описание фрактального анализа текстурных изображений, была рассмотрена классификация фракталов. Основные свойства фрактальных множеств, оценка размера фрактала производится по яркостному компоненту изображения. Характеристика треугольника Серпинского.
Подобные документы
Классификация и особенности построения некоторых геометрических фракталов. Рассмотрение фрактальных структур в природе, фрактальной графики и фрактальных картин в интерьере. Возможности применения фракталов в естественных науках, радиотехнике, финансах.
реферат, добавлен 09.04.2017Понятие фрактала, пример L-системы. Предпосылки возникновения теории фракталов. Геометрические, алгебраические и стохастические фракталы. Особенности применения теории фракталов. Фрактальные свойства экономических, социальных, биологических процессов.
курсовая работа, добавлен 27.02.2016Характерные признаки фрактальных множеств. Построение Канторова множества, снежинки Коха салфетки Серпинского при помощи L-систем. Визуализация "замощение треугольниками". Описание программного обеспечения "doLsys". Способы анимации фрактальных фигур.
дипломная работа, добавлен 29.10.2024Приведение примеров сложных геометрических фигур, обладающих свойством самоподобия. Описание фрактальных свойств природных объектов: растений, морских животных, природных явлений. Рассмотрение игрушки "Матрешка" как фрактала в народном творчестве.
реферат, добавлен 15.03.2017Использование фракталов для построения обычных и фоновых изображений, для анализа состояния биржевых рынков, при моделировании нелинейных процессов. Использование фракталов как популярного инструмента у трейдеров для анализа состояния биржевых рынков.
статья, добавлен 20.07.2018Смысл введения интегральных преобразований. Свойства линейности изображения. Теорема о интегрировании оригинала и изображений. Операционное исчисление и некоторые его приложения. Понятие о свертке функций. Теорема о умножении изображений. Теорема Эфроса.
реферат, добавлен 18.05.2010История зарождения перспективного изображения с использованием аксонометрии. Особенности центральной сферической проекции при зрительном восприятии чертежа. Свойства перспективных изображений. Правила расположения точек в перпендикулярной плоскости.
статья, добавлен 22.03.2016Исследование фракталов как математических объектов, изучение их особенностей и свойств, таких как самоподобие. Понятие дробной размерности. Канторово множество и его обобщение. Снежинка Коха, ковры Серпинского, кривая Пеано, дракон Хартера-Хейтуэя.
дипломная работа, добавлен 21.04.2011Основные понятия операционного исчисления, оригинала и изображения, соответствие между ними. Некоторые свойства преобразования и формула Лапласа. Таблица изображений простейших функций, изображения заданной функции и восстановление оригинала по нему.
лекция, добавлен 29.09.2014Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.
дипломная работа, добавлен 11.11.2019Модулярный дизайн детерминистических фрактальных структур в 2D пространстве. Коды, симметрия детерминистических фракталов на основе итерационной последовательности точек в 2D пространстве. Глобальная размерность детерминистических фрактальных структур.
статья, добавлен 21.06.2018Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.
статья, добавлен 15.02.2019Анализ динамики реальных природных систем. Моделирование каскадных водопадов и турбулентных процессов. Самоподобие как основное характерное свойство фракталов. Понятие дробной размерности. Правила построения снежинки Коха. Салфетка и ковёр Серпинского.
реферат, добавлен 07.12.2016- 14. Фракталы
Разные виды фракталов. Изучение природных явлений и объектов окружающего мира с точки зрения проявления в них фрактала. Возможности практического применения фрактала. Применение теории хаоса в реальном мире. Броуновское движение и его применение.
практическая работа, добавлен 02.01.2022 Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.
статья, добавлен 26.04.2019Основные виды графических изображений, используемые при анализе результатов исследования. Применение картограмм в практической деятельности врача. Отображение динамики явлений на линейных и столбиковых диаграммах. Группы ошибок статистического анализа.
лекция, добавлен 07.05.2014История развития фрактальной геометрии. Исследование фракталов в природе и математике, составление программы моделирования сложных неевклидовых объектов, образы которых весьма похожи на природные. Моделирование фракталов на языке программирования.
научная работа, добавлен 24.09.2013Изучение особенностей инъективного и сюръективного подходов к формированию регулярной фрактальной структуры. Характеристика фрактальной топологии объектов в геометрическом 2D пространстве. Принцип модулярного строения регулярных фрактальных структур.
статья, добавлен 26.06.2018Понятие прямоугольного треугольника, его характеристика и отличительные свойства. Теорема о сумме острых углов прямоугольного треугольника. Закрепление знаний учащихся в ходе решения тригонометрических задач по определению длины катетов и гипотенузы.
презентация, добавлен 30.10.2014Статистическое моделирование системы с возмущениями в виде фрактального броуновского движения. Интерполяция, экстраполяция и прогнозирование процесса по наблюдениям в двух точках. Анализ дифференциальной системы на основе фильтрации Калмана-Бьюси.
дипломная работа, добавлен 01.05.2015Принципы формирования и модулярного строения фрактальных структур в определенном структурированном пространстве на основе инъективно полученных фракталов Вичека (FV), канторова множества F(CM(1/3)) и итерационной последовательности точек F(IC(1/2)).
статья, добавлен 21.06.2018Фракталы и математический хаос, открытие их свойств при изучении итерированных отображений. Классические фракталы (самоподобие, снежинка Коха, ковер Серпинского). Графическая реализация L-систем в качестве подсистемы вывода. Понятие хаотической динамики.
реферат, добавлен 03.10.2012- 23. Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
реферат, добавлен 11.12.2011 - 24. Алгебра множеств
Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.
курс лекций, добавлен 28.03.2012 Понятие и характеристика треугольника Паскаля, история его открытия, специфика и предназначение биномиальных тождеств. Описание, отличительные черты методов включений и исключений. Использование производящих функций, сущность рекуррентных соотношений.
реферат, добавлен 30.03.2016