Популярные нейросетевые архитектуры
Модель формального кибернетического нейрона. Характеристика многослойного персептрона. Его обучение методом обратного распространения ошибки. Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. Области применения нейросетей.
Подобные документы
Особенности использования скоростного метода обучения многослойного персептрона, который отличается высокой скоростью обучения. Анализ результатов сравнения скоростного метода обучения со стандартными методами. Метод обратного распространения ошибки.
статья, добавлен 27.04.2017Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016Краткая история развития искусственных нейронных сетей. Анализ факторов, влияющих на формирование цены на недвижимость. Математическая модель нейрона. Сравнение многослойного персептрона и радиально-базисной сети. Архитектурная и адаптивная динамика.
дипломная работа, добавлен 02.09.2018Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
презентация, добавлен 16.10.2013Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.
статья, добавлен 25.03.2013Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Нейронные сети для решения задач классификации или кластеризации многомерных данных. Алгоритм работы блока функции преобразования. Рекурсивные сети. Программа Акинатор. Прохождение последовательности сигналов через сеть. Основные свойства персептрона.
курсовая работа, добавлен 19.07.2012Особенности реализации алгоритма обучения, временно прекращающего адаптацию наиболее значимых синапсов при обучении нейросети обратного распространения. Показатели обобщающей способности и большей устойчивости полученных нейросетей к отказам элементов.
статья, добавлен 08.02.2013Анализ проблемы выявления сетевой атаки с целью последующего применения мер по обеспечению информационной безопасности. Описание архитектуры многослойного персептрона с сигмоидальной функцией активации. Исследованы различные конфигурации нейронной сети.
статья, добавлен 30.07.2017- 11. Нейронные сети
Особенности программирования модели формального нейрона и персептрона Розенблатта, алгоритм и правило Хебба. Искусственный нейрон с активационной сигмоидальной логистической функцией. Персептронная система распознания изображений и сетевой поверхности.
лабораторная работа, добавлен 08.10.2014 Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020- 14. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Классификация лесных пожаров с помощью многослойного персептрона. Кластеризация стихийного, неуправляемого распространения огня в лесу с помощью карт Кохонена. Математическая модель и программное проектирование системы оценки последствий пожара.
курсовая работа, добавлен 04.02.2014Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
дипломная работа, добавлен 07.08.2018Сущность экспертных систем как самостоятельного направления в искусственном интеллекте. Основные правила их проектирования. Средства разработки экспертных систем. Понятие сигмоидального нейрона и звезд Гроссберга. Структура многослойного персептрона.
курс лекций, добавлен 21.05.2013Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.
статья, добавлен 02.06.2021- 19. Нейронные сети
Фрагмент нейросети (входной и выходной слои). Простейшая линейная функция от двух входов. Трактовка работы сети для имитации прохождения по ней возбуждения, управления. Теорема о сходимости перцептрона. Метод обратного программного распространения ошибки.
презентация, добавлен 16.11.2014 Решение по методу наименьших квадратов. Производные целевой функции по весам нейронов выходного слоя. Нахождение минимума методом наискорейшего спуска. Случайные весовые коэффициенты. Сеть прямого распространения со случайными весовыми коэффициентами.
реферат, добавлен 17.07.2013- 21. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 - 22. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Оценка прогностической значимости распространенных нейросетевых моделей для анализа ценностных составляющих приема участкового врача-терапевта. Модели на базе многослойного персептрона, радиально-базисной функции и обобщенно-регрессионной нейронной сети.
статья, добавлен 08.04.2022- 25. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011