Сравнительный анализ генетических алгоритмов поиска оптимального решения
Развитие интегрированных, гибридных и синергетических систем в современной информатике. Особенности алгоритма поиска гармонии (HS), его преимущества по сравнению с известными алгоритмами оптимизации. Сравнение комбинированных генетических алгоритмов.
Подобные документы
Разработка генетической топологии поиска нейросетевых моделей, ее программная реализация в составе моделирующей системы. Апробация топологии на актуальной задаче. Изучение методов совместного использования генетических алгоритмов и нейронных сетей.
автореферат, добавлен 02.05.2018Использование генетических алгоритмов как механизма для автоматического проектирования схем на реконфигурируемых платформах. Требования к проектированию генетических алгоритмов. Аппаратная реализация компактного и вероятностного генетического алгоритма.
статья, добавлен 16.01.2018Использование генетических алгоритмов для решения задач многокритериальной оптимизации. Операторы кроссинговера высших степеней и многородительское скрещивание. Применение генетических алгоритмов к проектированию вибраторных антенн, их характеристики.
статья, добавлен 17.01.2018Применение генетических алгоритмов (ГА), эффективных при решении задач оптимизации, их преимущества и недостатки. Процесс настройки и контроля параметров конкретного ГА, его влияние на эффективность решения задачи. Результаты тестирования алгоритмов.
статья, добавлен 29.04.2018Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017- 6. Решение прямой и обратной задач. Изучение генетических алгоритмов с помощью графического интерфейса
Графический интерфейс генетических алгоритмов. Нахождение глобального минимума функции переменной. Поиск аргументов с помощью генетических алгоритмов. Решение прямой, обратной задач. Изучение генетических алгоритмов в режиме командной строки MATLAB.
курсовая работа, добавлен 29.02.2020 Исследования и развитие спектрального метода. Поиск методов сокращения времени выбора эффективных целевых функций (ЦФ) оптимизационных задач. Взаимосвязь между сложностью поиска оптимального решения ЦФ при помощи генетических алгоритмов и её ландшафтом.
статья, добавлен 17.01.2018Действующие алгоритмы решения задач поиска оптимального маршрута в компьютерной сети. Алгоритмы Флойда, Дейкстры и алгоритм поиска оптимального маршрута путем возведения матрицы маршрутов в степень максимального ранга, их преимущества и недостатки.
статья, добавлен 22.03.2016Определение понятия и история создания генетических алгоритмов в решении оптимизационных задач. Анализ их конкурентоспособности при решении NP-трудных задач в сравнении с динамическим и линейным программированием. Схема работы и пример алгоритма.
контрольная работа, добавлен 09.03.2014- 10. Сравнение эффективности применения классических и интеллектуальных методов решения задач оптимизации
Реализация и применение методов покоординатного спуска, генетических алгоритмов и метода PSO. Выбор функции для оценки качества работы алгоритмов, реализующих методы оптимизации. Разработка программного обеспечения. Мерный вектор псевдослучайных чисел.
курсовая работа, добавлен 13.01.2016 Применение переборных алгоритмов в рамках задачи оптимизации транспортной логистики. Задачи применения генетических алгоритмов. Особенности работы операторов скрещивания. Способы решения проблемы перекрестного скрещивания в задаче коммивояжера.
доклад, добавлен 28.04.2014Рассмотрение особенностей использования графа для реализации алгоритмов поиска, построенного на основе начальных состояний и пространства доступных действий. Ознакомление с результатами сравнения поиска решений в ширину и глубину в агентной системе.
статья, добавлен 11.04.2016Понятие генетических алгоритмов как аналитических технологий, созданных и выверенных самой природой за миллионы лет ее существования. Особенности разработки системы, генерирующей решение с помощью генетических алгоритмов, характеристика их источника.
курсовая работа, добавлен 21.10.2013- 14. Практическая реализация перспективных схем генетического поиска в инструментальной среде "GenSeacrh"
Анализ вариантов реализаций генетических операторов и схем генетического алгоритма, способов построения гибридных систем с использованием генетического поиска, определение их недостатков. Разработка оптимальной инструментальной среды "GenSeacrh".
статья, добавлен 19.01.2018 Основные определения и понятия теории графов. Оптимизация решения задач с применением эволюционно-генетического подхода. Повышение технологичности и простоты конструктивного оформления элементов принципиальных схем на основе генетических алгоритмов.
курсовая работа, добавлен 28.02.2018Анализ значения компьютерного доступа к информации, в условиях современного мира. Изучение основных алгоритмов поиска подстроки в строковых последовательностях. Исторический обзор развития программирования в данной сфере. Виды архитектуры алгоритмов.
курсовая работа, добавлен 22.07.2013Возможности экспертных систем. Принципы работы дерева решений. Структура нейронных сетей, принципы проектирования с помощью пакета Matlab. Оптимизация функции с помощью генетических алгоритмов. Муравьиные алгоритмы поиска оптимального маршрута в графе.
учебное пособие, добавлен 29.02.2016Рассмотрение видов графов, существующих параллельных алгоритмов поиска кратчайшего пути, определение областей их применения. Рассмотрение систем навигации и анализ эффективности применения параллельных алгоритмов для поиска кратчайшего пути в графе.
статья, добавлен 16.07.2018История появления генетических алгоритмов, области их применения: составление расписаний, задачи раскроя-упаковки, аппроксимации. Способы реализации идеи биологической эволюции в рамках генетических алгоритмов. Операторы отбора, кроссинговера и мутации.
лекция, добавлен 09.10.2013- 20. Программа нечеткого вывода, построенная с использованием генетических алгоритмов и знаний экспертов
Представление реализации системы нечеткого вывода с использованием генетических алгоритмов и экспертных знаний. Использование мнений экспертов, выраженных в виде правил. Возможность по выделению первичных данных из файла путем применения алгоритма.
дипломная работа, добавлен 27.08.2016 Исследование методов, использующих оптимальность по Парето на основе генетических алгоритмов. Описание преимуществ метода SPEA (Strength Pareto Evolutionary Algorithm) и SPEA2 по отношению к другим наиболее часто применяемым методам VEGA, FFGA, NSGA.
статья, добавлен 27.07.2017Задачи для определения оптимальной модели нейронной сети. Характеристика общей модели нейронной сети. Сравнение различных алгоритмов поиска оптимального пути. Эффективность пчелиного алгоритма в решении задачи исследования и патрулирования местности.
статья, добавлен 08.03.2019Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Разработка подпрограммы поиска вершины с заданным ключом в двоичном дереве поиска. Ознакомление с результатами вывода программы на консоль. Характеристика и сравнение полученных результатов с теоретическими оценками. Описание используемых алгоритмов.
практическая работа, добавлен 17.12.2021Характеристика метода самоорганизующегося поиска и описание алгоритмов. Рассмотрение методов модификации исходного множества поиска, внесения избыточных данных. Разработка алгоритма с обратной связью. Построение алгоритма внутреннего СП-кэширования.
статья, добавлен 03.12.2020