Умови інтегрування диференціальних рівнянь 3-го порядку зі змінними коефіцієнтами
Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
Подобные документы
Лінійні однорідні та неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами, розв'язок за формулою Ейлера. Рівняння із спеціальною правою частиною, використання методу Лагранжа. Рішення лінійних диференціальних рівнянь n-гo порядку.
лекция, добавлен 19.11.2009Розгляд фундаментального розв’язку задачі Коші. Параболічні системи типу Шилова із залежними від просторової змінної молодшими коефіцієнтами. Дослідження властивостей параболічних рівнянь із змінними коефіцієнтами обмеженої гладкості та невід’ємним родом.
статья, добавлен 25.08.2016- 3. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 Характеристика особливостей методів інтегрування лінійних диференціальних рівнянь 1-го порядку. Проведення аналізу диференціальних рівнянь в R-L контурі. Вивчення способу варіації довільної константи. Розгляд прикладу використання методу Бернуллі.
контрольная работа, добавлен 16.02.2014Розробка нових математичних методів для розв’язання крайових задач теорії аналітичних функцій. Розширення класу інтегральних рівнянь типу згортки зі змінними коефіцієнтами, які ефективно розв’язуються за допомогою перетворення Фур’є у квадратурах.
автореферат, добавлен 30.10.2015- 6. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
контрольная работа, добавлен 24.01.2018Поняття нормальної системи звичайних диференціальних рівнянь. Характеристика методу виключення, його використання. Розв’язання диференціального рівняння n-го порядку. Розрахунок лінійного однорідного рівняння другого порядку зі сталими коефіцієнтами.
задача, добавлен 15.03.2014Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.
автореферат, добавлен 14.09.2014- 11. Умовні симетрії та точні розв'язки систем типу реакції-дифузії зі степеневими коефіцієнтами дифузії
Побудова умовних симетрій нелінійних скалярних рівнянь реакції-дифузії-конвекції та нелінійних систем рівнянь реакції-дифузії зі сталими та степеневими коефіцієнтами дифузії. Розрахунок та побудова широких класів точних розв’язків рівнянь та систем.
автореферат, добавлен 28.09.2015 Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Дослідження теорем метричного характеру про оцінки знизу малих знаменників, які виникли при побудові формальних розв'язків задач. Аналіз задач з інтегральними умовами для рівнянь із частинними похідними зі змінними коефіцієнтами гіперболічного типу.
автореферат, добавлен 30.07.2015Розгляд сингулярно збурених систем. Можливості формальної блочної діагоналізації системи при використанні функцій Ейрі, Вебера та Уіттекера. Основні методи побудови асимптотичного інтегрування лінійних диференціальних рівнянь з точками звороту.
статья, добавлен 22.01.2017Дослідження умов асимптотичної стійкості в середньому та середньому квадратичному розв'язках лінійних різницевих рівнянь з марковськими коефіцієнтами. Одержання достатніх умов асимптотичної стійкості за допомогою функцій Ляпунова з матричним аргументом.
статья, добавлен 14.09.2016Розгляд питання про побудову головного члена двофазового асимптотичного солітоноподібного розв'язку задачі Коші для сингулярно збуреного рівняння Кортевега-де Фріза зі змінними коефіцієнтами у загальному випадку. Опис множини початкових значень.
статья, добавлен 04.02.2017Пошук асимптотичних розв'язків лінійної сингулярно збуреної системи диференціальних рівнянь у випадку кратних коренів характеристичного рівняння за допомогою методу збуреного характеристичного рівняння. Побудова формальних розв’язків системи рівнянь.
статья, добавлен 04.02.2017Головний аналіз диференціального рівняння, що містить аргумент, функцію та її похідну. Особливість методики розв’язку задачі Коші. Лінійні та однорідні завдання другого порядку зі сталими коефіцієнтами залежно від коренів характеристичної теореми.
методичка, добавлен 07.09.2014Дослідження особливостей основних питань однозначної розв’язності деяких крайових задач для загальних диференціальних рівнянь і систем із сталими комплексними коефіцієнтами в напівалгебраїчних областях. Характеристика методу двоїстості рівняння-область.
автореферат, добавлен 29.08.2015Алгоритми побудови асимптотичних рішень нелінійних диференціальних рівнянь теплопровідності зі змінними коефіцієнтами, імпульсною дією, крайовими умовами Діріхле та Неймана. Розробка теорем про оцінку різниці між точним та наближеним розв’язками.
автореферат, добавлен 30.10.2015Матричний метод як універсальний метод розв’язку лінійних однорідних систем. Диференціальні рівняння. Характеристичне рівняння матриці. Набір власних векторів, що відповідають різним власним числам. Загальний розв’язок лінійного неоднорідного рівняння.
реферат, добавлен 10.01.2009Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
лекция, добавлен 08.08.2014Нелінійні еліптичні рівняння в необмежених областях, для яких задача Діріхле і Неймана мають єдиний загальний розв'язок без припущень на його поведінку і зростання вихідних даних на нескінченності за рахунок рівнянь зі змінними показниками нелінійності.
автореферат, добавлен 24.07.2014Рішення алгебраїчного рівняння третього ступеня. Обчислення періодичного режиму прямим інтегруванням до визначення коренів системи трансцендентних рівнянь ітераційними методами Ньютона та Стефенсена. Система диференційних рівнянь другого порядку.
контрольная работа, добавлен 13.03.2011Крайові задачі для рівняння Пуассона з правою частиною та для еліптичного рівняння другого порядку зі змінними коефіцієнтами яка залежить від часу як від параметру, в плоскому куті з граничною умовою, що містить як похідні за просторовими змінними.
автореферат, добавлен 25.06.2014