О продолжении дифференцируемых функций с отрезка их монотонности и неравенства типа Колмогорова
Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.
Подобные документы
Локализация корня путем осуществления выбора начального отрезка. Определение достаточного условия сходимости метода на выбранном отрезке. Проверка монотонности при помощи первой производной. Рассмотрение условия выхода из цикла уточнения корня.
лабораторная работа, добавлен 24.04.2015- 2. Вложение классов функций, интегрируемых с весом на отрезке и удовлетворяющих условия типа Липшица
Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.
статья, добавлен 30.10.2016 Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.
контрольная работа, добавлен 06.01.2015Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.
презентация, добавлен 07.05.2014Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
курсовая работа, добавлен 25.02.2019Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.
учебное пособие, добавлен 25.11.2013Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.
статья, добавлен 14.05.2017Задача о вариационном неравенстве. Необходимость разработки теории краевых задач с разрывными по фазовой переменной нелинейностями. Некоэрцитивные вариационные неравенства с непрерывными и многозначными нелинейностями. Условие Ландесмана-Лазера.
автореферат, добавлен 10.12.2013Отримання точних нерівностей для норм проміжних похідних функцій та розв'язання на цій основі важливих екстремальних задач аналізу. Вивчення тригонометричних поліномів і поліноміальних сплайнів. Взаємозв'язки точних нерівностей типу Колмогорова.
автореферат, добавлен 13.07.2014Основные условия возрастания функции на заданном отрезке. Теорема о достаточном условии убывания функции, ее геометрическая интерпретация. Порядок нахождения интервалов монотонности. Анализ взаимосвязи между значением аргумента и значением функции.
презентация, добавлен 21.09.2013Жизнь и профессиональная деятельность выдающегося математика Андрея Николаевича Колмогорова. Анализ теорем и аксиом элементарной теории вероятностей, понятие непрерывности и бесконечности пространства. Решение линейных уравнений в конечных разностях.
курсовая работа, добавлен 01.07.2014Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
контрольная работа, добавлен 17.12.2013- 14. Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Простейшие свойства модулей непрерывности высших порядков. Обобщение теоремы Джексона, неравенства С.Н. Бернштейна, обратных теорем теории приближения. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную непрерывную функцию.
дипломная работа, добавлен 26.02.2020 Рассмотрение математической модели АСК-анализа как варианта общего и универсального практического решения проблемы разработки базисных функций и весовых коэффициентов для разложения в ряд по ним произвольной функции состояния идентифицируемого объекта.
статья, добавлен 09.11.2020Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.
автореферат, добавлен 10.12.2013Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
контрольная работа, добавлен 28.12.2014Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.
статья, добавлен 26.05.2018Деление отрезка прямой в заданном отношении по средствам построения. Геометрическое определение "золотого сечения". Вывод формул для нахождения координат точки, делящей отрезок в данном отношении. Применение теорем Менелая и Чевы для решения задач.
курсовая работа, добавлен 18.05.2016Вклад Софьи Ковалевской в развитие математического анализа, механики и астрономии. Создание Лузиным дескриптивной теории функций. Роль Колмогорова в создании системы аксиом современной теории вероятностей. Создание аналитической геометрии П. Ферма.
презентация, добавлен 05.10.2015Линейная комбинация векторов - сумма произведений направленных отрезков на некоторые вещественные числа. Основные неравенства, которые возникают из при сложении векторов. Абсолютная величина векторного отрезка - расстояние между его началом и концом.
лекция, добавлен 06.09.2017Особенности определения технических показателей работоспособности проектируемой системы массового обслуживания. Характеристика аспектов решения уравнения Колмогорова. Определение требуемого количества операторов для безотказного функционирования.
контрольная работа, добавлен 20.12.2014Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.
презентация, добавлен 02.05.2012Исследование четырехэлементной краевой задачи типа Римана для метааналитических функций. Исследование и обоснование условий нетеровости рассматриваемой задачи и конструктивного метода ее решения в случае круга. Нахождение функций и расчет их параметров.
статья, добавлен 02.02.2019- 25. Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами и их исследование. Обобщение теоремы Джексона и обобщение известного неравенства С.Н. Бернштейна для производных от тригонометрического полинома. "Обратные теоремы".
дипломная работа, добавлен 22.04.2011