Обратная спектральная задача для пучков дифференциальных операторов на конечном интервале
Определение и характерные свойства мероморфной функции, исследование ее асимптотики. Изучение и доказательство теоремы единственности, а также методика получения конструктивной процедуры решения обратной задачи для пучков дифференциальных операторов.
Подобные документы
Получение системы обыкновенных дифференциальных уравнений для расчета интегральных характеристик релятивистских электронных пучков, широко используемых в приближенном исследовании пучков, также учитывающей столкновительные процессы и воздействие полей.
автореферат, добавлен 27.11.2017Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
курсовая работа, добавлен 13.11.2013Ознакомление с алгоритмом построения трансляционных матриц для неоднородных дифференциальных операторов на примере уравнения Пуассона. Рассмотрение и характеристика особенностей операторов Лапласа и Гельгольца в задачах электростатики и электродинамики.
статья, добавлен 29.07.2016Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.
контрольная работа, добавлен 03.02.2011- 5. Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
статья, добавлен 01.02.2019 Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Изучение поведения решений дифференциального уравнения. Вычисление асимптотики собственных значений дифференциального оператора. Выведение асимптотика решений соответствующего дифференциального уравнения при больших значениях спектрального параметра.
статья, добавлен 21.06.2018Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Система двух функционально-дифференциальных уравнений общего вида. Достаточные условия разрешимости периодической краевой задачи для этой системы в случае резонанса. Периодическая краевая задача для системы функционально-дифференциальных уравнений.
статья, добавлен 26.04.2019Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Доказательство теоремы существования и единственности решения аналога задачи Франкля для уравнения смешанного параболо-гиперболического типа третьего порядка. Представление теоремы об однозначной разрешимости нелокальной внутренне-краевой задачи.
автореферат, добавлен 27.03.2018Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Общие сведения об отражающей функции. Эквивалентность совпадения отражающих функций, вспомогательные утверждения и их доказательства. Решение задачи возмущения дифференциальных систем, не меняющего отражающей функции, справедливость теоремы.
курсовая работа, добавлен 13.04.2014Исследование и анализ свойств оператор-функции задачи и доказательство теоремы единственности для случая, когда одна из сред имеет поглощение. Структура спектра задачи в случае сред без поглощения. Обоснование и реализация численного метода Галеркина.
автореферат, добавлен 26.01.2018История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Связь функциональных операторов с ретрактами и пространствами Дугунджи. Классификация функциональных операторов. Пространства частичных отображений и пространства решений дифференциальных уравнений. Теорема Дугунджи для пространства с фильтрациями.
статья, добавлен 19.10.2016Роль полиномиальных систем в общей качественной теории автономных систем двух дифференциальных уравнений. Элементарное доказательство теоремы Берлинского А.Н. о числе особых точек второй группы системы. Исследование на ацикличность квадратичной системы.
статья, добавлен 05.07.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Рассмотрение обратной краевой задачи для эволюционного уравнения четвёртого порядка, возникающего в гидроакустике стратифицированной жидкости. Решение обратной задачи при граничных условиях. Теорема существования и единственности классического решения.
статья, добавлен 27.09.2012Изучается краевая задача с нелокальным граничным условием для уравнения смешанного типа с неизвестной правой частью в прямоугольной области. Установлен критерий единственности решения поставленной обратной задачи в виде сумм биортогональных рядов.
статья, добавлен 31.05.2013Оценка разности спектральных функций для степени оператора Лапласа. Обратные задачи спектрального анализа и интерполяция. Восстановление потенциала в обратной задаче спектрального анализа для возмущенной степени оператора Лапласа в пространстве R2.
автореферат, добавлен 10.12.2013