Геометрия в архитектуре
Определение взаимосвязи свойств архитектурных сооружений с геометрическими формами. Адаптация архитектурных пропорций к архитектурным задачам представлений о геометрии и законах пространства. Сочетание различных геометрических фигур в архитектуре.
Подобные документы
Описание базовых геометрических фигур как основ архитектурных форм. Правильный круг и пирамида как исторические прототипы геометрических и архитектурных форм. Геометрические формы в проектах советских авангардистов. Комбинирование архитектурных форм.
творческая работа, добавлен 03.05.2019Изучение геометрии криволинейных поверхностей как важнейший этап в профессии архитектора. Поверхность как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии. Геометрический анализ известных архитектурных сооружений.
статья, добавлен 11.08.2018Изучение взаимосвязи геометрии и архитектуры. Примеры геометрических зданий с использованием цилиндра, параллелепипеда и пирамиды. Симметрия и дисимметрия, соотношения и пропорции целого и частей в создании пространственно-объемной архитектурной формы.
презентация, добавлен 10.04.2015Значение геометрии в практической деятельности человека, история ее развития. Созидательная сила прямого угла. Геометрия в величайших архитектурных сооружениях: Тадж-Махал, египетская пирамида, русские церкви. Применение окружности в строительстве.
контрольная работа, добавлен 14.05.2011Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.
книга, добавлен 28.03.2013Геометрия - наука, изучающая формы, размеры и взаимное расположение геометрических фигур. История возникновения и развития науки с древних времен и до наших дней. Особенности изучения геометрии в философских школах Древней Греции, выдающиеся ученые.
реферат, добавлен 22.09.2011Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.
реферат, добавлен 04.12.2008Переход от практической к философской геометрии, получение новых геометрических свойств. Определение и элементы многогранников (грань, вершина, ребро). Примеры и вид выпуклых и невыпуклых многограннииков. Многогранники в природе, архитектуре и искусстве.
презентация, добавлен 02.04.2012Геометрия Лобачевского ("воображаемая" геометрия). Создание модели геометрии Лобачевского из материалов геометрии Евклида, а также установление непротиворечивости и законности новой геометрической системы, разные геометрии и разные пространства.
реферат, добавлен 18.02.2010Понятие и особенности строения многогранника как тела, граница которого является объединением конечного числа многоугольников. Отражение данных геометрических форм в архитектуре, биологии, живописи. Многогранники в архитектуре современной Москвы.
презентация, добавлен 13.04.2014Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.
реферат, добавлен 29.04.2018Геометрия - раздел математики, изучающий пространственные отношения и формы. Составление списка фамилий, в которых встречаются названия геометрических фигур. Группа фамилий, которые можно объединить по одному признаку. Значение фамилии для науки.
практическая работа, добавлен 19.11.2016Развитие геометрических представлений на Востоке и в Греции. Создание Евклидом труда "Начала", сохранявшего руководящую роль в течение свыше двух тысяч лет. Разработка Декартом аналитической геометрии и метода координат. Открытие неевклидовой геометрии.
реферат, добавлен 13.12.2020Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Изображение геометрических фигур в параллельной проекции. Методика решения задач на построение. Изучение теоретической основы практической графики. Проективные преобразования.
курсовая работа, добавлен 09.11.2021История открытия фрактальной геометрии, определение ее сущности и особенностей. Значение, использование фрактальной геометрии в различных сферах и профессиях человеческой деятельности. Описание вклада Бенуа Мандельброта в изучение фрактальной геометрии.
статья, добавлен 12.02.2019Зарождение и развитие архитектуры. Геометрия в практической деятельности человека. Храм в Дейр Эль–Бахри, геометрия при строительстве метро, здания с круглым основанием. Проверка правильности угольника и линейки. Расстояние между недоступными точками.
реферат, добавлен 03.10.2010Изучение сфер жизни человека, в которых присутствует математика. Связь геометрии с повседневной жизнью человека. "Золотое сечение" в окружающей действительности, его применение в архитектуре и произведениях искусства. История возникновения геометрии.
презентация, добавлен 14.04.2016Повышение общей мотивации к учению при использовании законов геометрии в изучении других предметов, связанных с геометрическими построениями. Особенность решения элементарных задач на построение с помощью использования программы "Живая геометрия".
статья, добавлен 22.04.2019Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.
учебное пособие, добавлен 13.09.2017Понятие стереометрии (геометрия в пространстве) как раздела геометрии, изучающего положение, форму, размеры и свойства различных пространственных фигур. Анализ возникновения и развития стереометрии, ее применение в практической деятельности человека.
статья, добавлен 24.02.2019Геометрия - наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Определение роли, которую сыграла неевклидова геометрия в математике и теории геометризованной гравитации Гросмана-Гильберта-Эйнштейна.
статья, добавлен 06.04.2019Применение математических знаний во всех отраслях человеческой деятельности: в промышленности, архитектуре, медицине, астрономии, программировании, геодезии, быту и технике. Математическое моделирование как основа создания архитектурных моделей.
презентация, добавлен 03.04.2015Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.
реферат, добавлен 28.09.2014- 24. Площади фигур
История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.
реферат, добавлен 02.11.2015 Геометрическая фигура как мысленный образ предмета, учитывающий только его форму и размер. История возникновения геометрии и искусства. Использование геометрических форм в различных видах искусства. Связь геометрии и искусства в городе Качканар.
контрольная работа, добавлен 23.10.2023