Выделение минимального остовного дерева

Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.

Подобные документы

  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа, добавлен 04.12.2019

  • Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.

    контрольная работа, добавлен 13.03.2017

  • Элементы теории графов. Общая схема метода динамического программирования. Построение сетевого графика технологического комплекса. Критические пути и нахождение времени завершения комплекса работ. Задача о построении минимального остовного дерева.

    учебное пособие, добавлен 01.04.2014

  • Рассматривается задача, в которой матрица весовых коэффициентов дуг не является симметричной. Исследуются основные математические модели, включая модель с минимальным числом линейных ограничений. Рассматривается нахождение минимального остовного дерева.

    статья, добавлен 12.05.2018

  • Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.

    статья, добавлен 15.01.2019

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция, добавлен 11.02.2010

  • Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.

    контрольная работа, добавлен 29.06.2012

  • Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.

    курсовая работа, добавлен 14.01.2016

  • Укладка деревьев минимальной длины и ширины. Реализация алгоритма укладки дерева минимальной ширины и длины. Определение укладки ориентированного дерева, характеристика основных способов нахождения длины и ширины укладки дерева. Метки вершин дерева.

    дипломная работа, добавлен 07.12.2019

  • Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.

    статья, добавлен 13.01.2014

  • Расчет временных характеристик чистового сетевого графика. Нахождение ранних и поздних сроков совершения событий. Определение критического времени пути. Построение графиков минимального покрывающего дерева. Составление таблицы результатов вычислений.

    задача, добавлен 03.04.2014

  • Понятие графа в математической теории и информатике, виды и область применения графов. Код Харари, сущность идеи Ф. Харари, основателя теории графов. Нахождение кратчайшего пути во взвешенном графе, восстановление дерева по заданному коду Прюфера.

    контрольная работа, добавлен 24.11.2014

  • Методика определения хроматического числа неориентированного графа. Пример графа для иллюстрации логики нахождения правильной раскраски. Характеристика метода нахождения пути минимального окрашивания, который основан на решении задачи о покрытии.

    презентация, добавлен 25.09.2017

  • Построение модели системы организации маршрутов в транспортной системе с предфрактальных графов. Сравнительный анализ вычислительной сложности предложенного алгоритма с известным алгоритмом Прима. Алгоритм Бета 2 выделения наибольших максимальных цепей.

    реферат, добавлен 20.05.2017

  • Нахождение по заданной матрице весов графа величины минимального пути по алгоритму Дейкстры, величины максимального пути. Нахождение минимального пути по алгоритму Беллмана-Мура между вершинами. Определение максимального потока по заданной матрице.

    контрольная работа, добавлен 06.04.2020

  • Нахождение пути минимального веса между вершинами в нагруженном графе с помощью алгоритма Дейкстры. Максимальный поток в транспортной сети с использованием алгоритма Форда-Фалкерсона. Проверка по теореме Форда-Фалкерсона. Пропускные способности дуг.

    курсовая работа, добавлен 03.10.2017

  • Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.

    курсовая работа, добавлен 04.12.2023

  • Характеристика методики аналитического нахождения минимального значения функции через необходимое и достаточное условие экстремума. Реализация алгоритма поиска минимального значения функции методом градиентного спуска на языке программирования С++.

    курсовая работа, добавлен 28.10.2017

  • Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.

    учебное пособие, добавлен 15.10.2016

  • Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.

    методичка, добавлен 28.06.2013

  • Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.

    курсовая работа, добавлен 23.08.2014

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.

    презентация, добавлен 09.09.2017

  • Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.

    курсовая работа, добавлен 20.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.