Основы комбинаторики
Понятие о науке "Комбинаторика". Комбинаторика как раздел математики, изучающий размещения, перестановки, сочетания. Комбинаторика в различных областях жизнедеятельности: в литературе, на шахматной доске и в играх. Фигурные числа, старинные задачи.
Подобные документы
Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.
реферат, добавлен 22.01.2013Возникновение комбинаторики как науки, важные достижения и интерес к комбинаторным задачам. Значение комбинаторики в различных областях науки и производственной сферы. Общие формулы, позволяющие решать комбинаторные задачи, интересные примеры.
реферат, добавлен 13.04.2014Предмет комбинаторики, ее определение как одного из раздела математики. История возникновения и развития комбинаторики как отдельного раздела. Особенности комбинаторики на Востоке, в Индии и в Китае: научные достижения математики и их многообразие.
реферат, добавлен 07.07.2014Формулы и принципы комбинаторики, применение ее в теории вероятностей для подсчета вероятности случайных событий. Изучение закономерности массовых случайных явлений, правильное понимание статистических закономерностей, проявляющихся в природе и технике.
контрольная работа, добавлен 24.03.2018Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.
контрольная работа, добавлен 17.12.2011Понятие комбинаторики, история развития науки: древний период, средневековье, новое время. Современное развитие комбинаторики. Анализ элементов комбинаторики: размещение с повторением, без повторения, перестановки и сочетания. Примеры из комбинаторики.
реферат, добавлен 06.04.2016Комбинаторика - наука о расположении элементов в определенном порядке и о подсчете числа способов такого расположения. Классические элементы комбинаторной теории вероятности. Рассмотрение правил суммы и умножения. Перестановка и размещение комбинаций.
презентация, добавлен 26.07.2015Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.
реферат, добавлен 24.04.2015Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.
презентация, добавлен 10.11.2015Исторические сведения о комбинаторике. Комбинаторика как составляющая любого исследования, предполагающего сначала анализ (расчленение целого на части), а затем синтез (соединение частей в целое). Сочинение Я. Бернулли "Искусство предположений".
реферат, добавлен 17.05.2010Построение комбинаторной теории Лейбницем. Использование ее при решении задач алгебры, геометрии. Интеграция комбинаторики в современную математику. Правила суммы и умножения. Описание урновой схемы как одной из простейших моделей теории вероятностей.
контрольная работа, добавлен 17.06.2014Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.
реферат, добавлен 21.12.2016Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
реферат, добавлен 03.05.2019Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.
учебное пособие, добавлен 28.12.2013Примеры решения логических, дедуктивных заданий: на нахождение истинного ответа, складывание и разрезание, восстановление исходного равенства, ребусы, соответствия и графы, комбинаторика, противоречия. Анализ и алгоритм нахождения правильных ответов.
реферат, добавлен 03.06.2014Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.
реферат, добавлен 06.01.2015Комбинаторика как выбор и расположение элементов некоторого множества в соответствии с заданными правилами. Классические комбинаторные задачи. Задача коммивояжера, имеющая ряд применений в исследовании операций при решении некоторых транспортных проблем.
курсовая работа, добавлен 25.08.2016Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Знакомство с основами математического раздела, изучающего дискретные объекты и множества. Фундаментальные понятия и обозначения, встречающиеся в комбинаторики. Процесс нахождения числа перестановок с помощью Excel. Сочетание и размещение подмножеств.
лабораторная работа, добавлен 16.12.2013Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.
лекция, добавлен 25.10.2019История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.
презентация, добавлен 20.11.2011Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.
книга, добавлен 06.05.2013Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
реферат, добавлен 31.01.2014