Численное решение дифференциальных уравнений
Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
Подобные документы
Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
курсовая работа, добавлен 13.11.2013Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Принцип Дюамеля для дифференциальных уравнений с частными производными. Задача Коши для однородного уравнения с неоднородными начальными условиями. Метод импульсов и интеграл Дюамеля. Принцип суперпозиции для линейного дифференциального уравнения.
контрольная работа, добавлен 09.05.2015Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.
контрольная работа, добавлен 05.12.2013Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
статья, добавлен 26.04.2019Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.
контрольная работа, добавлен 01.04.2015Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.
лекция, добавлен 06.04.2018Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Наличие высокого порядка аппроксимирующих формул - одна из наиболее специфических особенностей современных численных алгоритмов решения задачи Коши. Характеристика и методика расчета явных экстраполяционных уравнений Адамса-Башфорта третьего порядка.
курсовая работа, добавлен 27.11.2017Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016