Разработка и исследование метода прогнозирования популярности видеоконтента
Прогноз популярности на основе признаков настроения и содержания видео. Способ прогнозирования популярности на основе сверточной сети с долгосрочной памятью. Предсказание славы видеоконтента на основе статистики видеоконтента c помощью нейронной сети.
Подобные документы
Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.
статья, добавлен 15.12.2021Применение модуля программы, спроектированного на основе сверточной нейронной сети. Исследование способности нейронной сети к обучению на небольшом наборе данных в задаче классификации оружия на изображениях. Анализ результатов тестирования программы.
статья, добавлен 17.02.2019Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Получение качественного прогноза. Повышение качества и точности прогнозирования, посредством выбора метода прогнозирования и разработки программного продукта, построенного на нейронной сети. Экспериментальная оценка эффективности предлагаемых критериев.
статья, добавлен 21.02.2019Понятия, касающиеся разработки видео. Актуальность внедрения видео в образовании. Видеозахват экрана посредством iSpring Free Cam 8. Видеомонтаж отснятого материала в видеоредакторе Adobe Premiere Pro CC. Внедрение видеоконтента в процесс обучения.
курсовая работа, добавлен 07.08.2018Разработка Розенблаттом математической и компьютерной модели восприятия информации мозгом на основе двухслойной обучающейся нейронной сети. Алгоритм параллельной распределённой обработки данных в середине 1980 годов. Основы нейросетевых технологий.
дипломная работа, добавлен 07.08.2018- 8. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
статья, добавлен 21.02.2013Разработка методики прогнозирования потребительских свойств растений подсолнечника на основе анализа их фенотипических признаков. Рассмотрение примеров карточек прогнозирования (экранных форм). Анализ сети фенотипических признаков: "высота растения".
статья, добавлен 26.04.2017Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.
статья, добавлен 25.09.2012Разработка алгоритма распознавания чисел с эмуляцией нейронной сети на основе использования стандартных функций табличного процессора MS Excel. Распознавание образов знаков десятичной системы, построенной с помощью горизонтальных и вертикальных штрихов.
статья, добавлен 29.01.2020Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.
статья, добавлен 27.07.2017- 15. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Исследование и анализ результатов сравнения нейронной сети на основе формальных понятий с другими методами классификации данных. Ознакомление с методами классификации данных на реальных датасетах. Характеристика антимононотонности соответствия Галуа.
дипломная работа, добавлен 01.09.2017Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Проблемы и возможности прогноза курса валют. Анализ финансовых временных рядов. Разработка искусственного интеллекта в виде нейронной сети для предсказания курса валют с гибкой настройкой. Архитектура, структура и компоненты программного приложения.
дипломная работа, добавлен 07.08.2018Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.
дипломная работа, добавлен 07.08.2018- 20. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.
контрольная работа, добавлен 31.05.2013Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015Топология нейронной сети с добавленной сверточной плоскостью, модифицированной активационной функцией нейронов, обеспечивающая выделение сюжета на произвольном фоне. Анализ количества ложных обнаружений на различных итерациях процедуры самонастройки.
автореферат, добавлен 02.09.2018Фишинг как одна из главных причин взлома учетной записи в социальной сети. Развитие технологий машинного обучения - причина их активного применения в различных областях. Разработка алгоритма для получения набора данных для обучения нейронной сети.
статья, добавлен 09.05.2022- 25. Применение нейронных сетей для построения модели прогнозирования состояния городской воздушной среды
Характеристика процессов распространения загрязняющих веществ в атмосфере. Описание нейросетевых моделей прогнозирования и определение их эффективности. Пример построения структуры нейронной сети для прогнозирования распределения диоксида азота.
статья, добавлен 29.05.2017