Численное дифференцирование
Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.
Подобные документы
Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.
контрольная работа, добавлен 23.12.2017Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Интерполяционная задача Эрмита о построении многочлена, принимающего заданные значения функции и ее производных в узловых точках. Упрощение вывода формулы интерполяционного многочлена Эрмита. Интерпретация многочлена в представлениях многочлена Тейлора.
статья, добавлен 12.05.2018Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.
лабораторная работа, добавлен 06.11.2021Алгоритм определения функции от матриц, их значения на спектре, свойства и доказательства. Построение интерполяционного многочлена Ланганжа-Сильвестра. Теорема Фробениуса-Перона. Анализ эрмитовых и квадратичных матриц. Спектральное разложение функции.
реферат, добавлен 30.10.2010Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Анализ подхода, основанного на приближении таблично заданной функции с помощью алгебраического интерполяционного многочлена Лагранжа. Построения формулы для вычисления второй производной с использованием аппроксимации. Метод неопределенных коэффициентов.
презентация, добавлен 30.10.2013- 8. Интерполяция
Интерполяционная формула Лагранжа. Определение производных функции. Оценка остаточного члена. Исчисление корня уравнения с помощью обратного интерполирования. Построение интерполяционного многочлена Ньютона. Сущность вычислительных методов алгебры.
контрольная работа, добавлен 23.04.2011 Понятие функции от матрицы: определение, значение, основные свойства. Построение интерполяционного многочлена Лагранжа-Сильвестра. Спектральная теорема для простых матриц и ее следствие. Характеристика эрмитовых, квадратичных и неотрицательных матриц.
контрольная работа, добавлен 31.10.2010Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.
лабораторная работа, добавлен 20.05.2015Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.
контрольная работа, добавлен 21.12.2010Описание метода нахождения корня (нуля) заданной функции касательных. Исследование особенностей интерполяционного полинома Ньютона. Рассмотрение общих положений численного интегрирования. Характеристика случаев применения метода прямоугольников.
реферат, добавлен 08.08.2015Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.
учебное пособие, добавлен 25.01.2019Рассмотрение методов статистического анализа нелинейных динамических систем. Характеристика метода интерполяционных полиномов. Обоснование выбора программного обеспечения. Построение графика функции и интерполяционного многочлена формуле Лагранжа.
курсовая работа, добавлен 19.04.2017Рассмотрение функции как одной из основных определений математики, изучение её истории. Исследование основных понятий производной. Характеристика геометрического и физического смысла производной. Определение правил логарифмического дифференцирования.
реферат, добавлен 09.03.2016Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.
курс лекций, добавлен 03.07.2013Рассмотрение основных правил дифференцирования и осуществление дифференцирования сложной функции. Изучение правила исследования функции на монотонность. Определение точек локальных максимумов и минимумов. Расчет стационарных точек, попадающих в интервал.
презентация, добавлен 26.07.2015Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.
реферат, добавлен 12.11.2014- 23. Численные методы
Изучение сущности и особенностей построения интерполирующей функции. Рассмотрение метода полиномиальной интерполяции Шарля Эрмита. Анализ интерполяционных формул для функций двух переменных. Специфика численного дифференцирования и его погрешность.
реферат, добавлен 19.05.2014 Симметрические многочлены - системы уравнений, в которые x и y входят одинаковым образом. Важнейшие примеры симметрических многочленов. Представление симметрического многочлена от x и y в виде многочлена от а = х + у и а = ху: доказательство теоремы.
курсовая работа, добавлен 12.02.2012Определение понятия производной. Изучение правил и формул дифференцирования. Анализ геометрического смысла производной. Построение уравнения касательной и нормали к графику функции, угла между ними. Решение планиметрических и стереометрических задач.
курсовая работа, добавлен 14.02.2017