Автоматическая кластеризация в анализе данных на основе саморганизующихся карт Кохонена

Характеристика классических методов кластеризации. Особенности самоорганизующихся карт Кохонена как одного из методов аппроксимации данных. Настройка веса на основе обучающего множества без учителя. Классический алгоритм "Победитель забирает все".

Подобные документы

  • Специфіка методів та алгоритмів, які вдосконалюють процес самоорганізації карт Кохонена, візуалізація кластерної структури даних. Розробка багатопотокового алгоритму навчання карт Кохонена для організації ефективних обчислень на багатоядерних процесорах.

    автореферат, добавлен 18.07.2015

  • Исследование и анализ процесса организации интеллектуального репозитария электронной документации. Ознакомление с теоретическими аспектами кластеризации на основе нейронных сетей. Рассмотрение и характеристика структуры данных кластеризации Кохонена.

    статья, добавлен 18.01.2018

  • Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.

    статья, добавлен 26.04.2019

  • Методы применения инновационных интеллектуальных технологий в маркетинге на основе моделирования нейронных сетей с использованием самоорганизующихся карт Кохонена. Понятие нейросетевых технологий. Группировка информации. Визуализация многомерных данных.

    статья, добавлен 08.02.2014

  • Анализ основных проблем, возникающих при применении методов кластеризации. Разработка метода и алгоритма кластеризации на базе нечеткого отношения эквивалентности. Разработка критериев качества кластеризации, пригодных для построения адаптивной системы.

    автореферат, добавлен 31.07.2018

  • Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.

    дипломная работа, добавлен 12.01.2012

  • Алгоритмы предобработки данных. Методы, модели кластеризации и ее метрики. Постановка задачи оценки выбора методов успеваемости студентов. Сравнение регрессионных алгоритмов. Интерфейс программного продукта. Обоснование выбора среды программирования.

    дипломная работа, добавлен 01.09.2018

  • Описание мягкого вероятностного нечеткого алгоритма кластеризации многомерных данных, последовательно поступающих на обработку в режиме реального времени. Использование алгоритма для решения задач Dynamic Stream Mining в условиях перекрывающихся классов.

    статья, добавлен 19.06.2018

  • Алгоритм відновлення графічних образів за допомогою карти Кохонена. Аспекти ефективної реалізації алгоритму, поняття "карти міри пошкодженості блоків". Оцінка реалізації алгоритму. Залежність результату відновлення від вхідних параметрів алгоритму.

    статья, добавлен 30.01.2017

  • Разработка системы, производящей кластеризацию объектов по ряду признаков. Выявление кластеров (групп) входных векторов, обладающих некоторыми общими свойствами. Идея векторного квантования. Обучение сети Кохонена. Конкурирующая функция активации.

    контрольная работа, добавлен 13.01.2017

  • Нейроны слоя Кохонена и генерация сигналов. Обучение слоя Кохонена. Присвоение начальных значений и метод выпуклой комбинации. Чувство справедливости. Коррекция весов пропорционально выходу. Аккредитация и интерполяция - режимы работы сети Кохонена.

    презентация, добавлен 16.10.2013

  • Классификация лесных пожаров с помощью многослойного персептрона. Кластеризация стихийного, неуправляемого распространения огня в лесу с помощью карт Кохонена. Математическая модель и программное проектирование системы оценки последствий пожара.

    курсовая работа, добавлен 04.02.2014

  • Анализ данных при помощи визуализаторов. Прогнозирование с помощью линейной регрессии. Кластеризация с помощью самоорганизующейся карты Кохонена. Описание демо-примера программы Deductor. Характеристика многомерного кросс-платформенного хранилища данных.

    лабораторная работа, добавлен 20.10.2012

  • Распознавание сетью структуры данных. Решение задач классификации в сетях Кохонена. Использование доверительных уровней (порогов принятия и отвержения) для интерпретации выходных значений в пакете ST Neural Networks. Границы диапазона для переменной.

    реферат, добавлен 21.10.2014

  • История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.

    дипломная работа, добавлен 12.01.2012

  • Проблема разработки универсальных методов, пригодных для обработки информации. Оценка возможности использования модифицированного алгоритма кластеризации в задаче опорно-двигательного аппарата. Анализ и описание основных этапов алгоритма Хамелеон.

    лекция, добавлен 30.01.2016

  • Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.

    книга, добавлен 07.03.2014

  • Обзор существующих решений кластеризации лиц. Разработка прототипа мобильного приложения группирующего лица. Алгоритм кластеризации лиц. Архитектура мобильного приложения. Тестовый набор данных. Оценка результатов экспериментального запуска алгоритмов.

    дипломная работа, добавлен 04.12.2019

  • Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).

    курсовая работа, добавлен 04.04.2009

  • Рассмотрение основных современных подходов к кластеризации данных. Описание предшествующих решений и предоставление версии алгоритма мультимодальной кластеризации для запуска в системе распределённых вычислений под Apache Hadoop. Адаптация алгоритма.

    дипломная работа, добавлен 30.08.2016

  • Методы автоматизированного неразрушающего контроля в рамках задачи кластеризации данных по применению коротковолнового электромагнитного излучения при дефектоскопии. Методы исследования: самоорганизующиеся карты Кохонена в рамках Data Mining подхода.

    статья, добавлен 11.11.2018

  • Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.

    диссертация, добавлен 24.05.2018

  • Рассмотрение и анализ методов проактивного мониторинга дорожно-транспортной инфраструктуры на основе сбора и обработки больших данных о событиях на контролируемых участках дорог. Характеристика методов сбора, консолидации и обработки больших данных.

    статья, добавлен 02.01.2022

  • Определение нейронных сетей методом Давидона-Флетчера-Пауэлла. Расчет с индивидуальными данными начальной точки для негладких функций. Кластеризация данных на основе графовых моделей и статистических методов с индивидуальным заданием точек наблюдения.

    контрольная работа, добавлен 26.02.2015

  • Проведение системного анализа и оценки свойств, принципов работы и основных характеристик методов сжатия данных, определение эффективных алгоритмов для уменьшения объема данных. Предназначение кодирования строковых данных и данных произвольного типа.

    статья, добавлен 29.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.