Линейная алгебра. Матрицы
Элементы линейной алгебры и ее следование из вычислительных задач. Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов поля, представляющая совокупность строк и столбцов, на пересечении которых находятся её элементы.
Подобные документы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.
лекция, добавлен 29.09.2013Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.
курсовая работа, добавлен 03.12.2013Определяются фундаментальные понятия матричного исчисления: линейно зависимые и независимые совокупности строк (столбцов) матрицы, ранг матрицы, сумма и произведение матриц, определитель матрицы, обратная матрица. Свойства определителей алгебры логики.
статья, добавлен 30.08.2020Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
учебное пособие, добавлен 25.11.2012Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.
курсовая работа, добавлен 17.11.2019Ранг системы строк (столбцов) матрицы A c m строк и n столбцов как максимальное число линейно независимых строк (столбцов). Ранг матрицы – наивысший из порядков миноров этой матрицы, отличных от нуля. Теорема Кронекера – Капелли, содержание и значение.
реферат, добавлен 03.12.2012Тензор - объект линейной алгебры, преобразующий элементы пространства. Создание абстрактных моделей в математических терминах. Произведение длин векторов и косинуса угла. Понятия скаляра, вектора и матрицы. Тензорный анализ и дифференциальная геометрия.
реферат, добавлен 25.02.2021- 10. Ранг матрицы
Определитель с элементами, стоящими на пересечении строк, и столбцов матрицы. Правило вычисления ранга матрицы. Перебор всех возможных миноров. Элементарные преобразования: умножение, прибавление и перестановка рядов. Метод "окаймляющих миноров".
лекция, добавлен 29.09.2013 Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.
методичка, добавлен 22.12.2010Производственная сфера хозяйства и использование математических методов для оценки её эффективности. Межотраслевой баланс производства и применение линейной алгебры в экономике. Графическое отображение закономерностей и расчётф зависимости явлений.
контрольная работа, добавлен 20.06.2012Решение задач по линейной алгебре, тензорному исчислению, системам дифференциальных уравнений и теории устойчивости. Линейная зависимость векторов. Сумма и перечисление подространств. Ортогонализация по Граму-Шмидту. Матрица сопряженного оператора.
учебное пособие, добавлен 03.10.2012Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.
реферат, добавлен 15.06.2013- 16. Ранг матрицы
Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.
презентация, добавлен 29.08.2015 Рассмотрение инструментов, применяемых для решения задач линейной алгебры с помощью MathCad. Определение значения матричного выражения. Определение матричного выражения в буквенном виде и запись его значения. Умножение матрицы на единичную матрицу.
практическая работа, добавлен 31.10.2019Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.
учебное пособие, добавлен 12.05.2014Определитель как одно из основных понятий линейной алгебры. Нахождение обратной матрицы. Коэффициенты при переменных и свободные членов. Методы Крамера и Гаусса. Отрезки, отсекаемые плоскостью на осях координат. Исследование функции и построение графика.
контрольная работа, добавлен 08.10.2014Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.
лекция, добавлен 15.09.2017Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.
учебное пособие, добавлен 06.02.2011Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
курс лекций, добавлен 07.04.2013Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.
курс лекций, добавлен 29.05.2014Разрешение вопросов и задач линейной алгебры, а также определение понятий. Исследование элементов аналитической геометрии на прямых, плоскостях, в трехмерном и в N–мерном пространствах. Математический анализ, а также дифференциальное исчисление.
курс лекций, добавлен 24.01.2011