Построение модели оценки рентабельности автотранспортного средства методом смещенного оценивания параметров регрессионных уравнений

Методика построения модели оценивания рентабельности автотранспортного средства методом ридж-регрессии на примере предприятия, осуществляющего городские пассажироперевозки. Величина ошибки прогноза в качестве критерия оптимальности регрессионной модели.

Подобные документы

  • Оценка динамической модели по входным и выходным данным методом наименьшего квадрата. Сравнение оценки параметров модели. Сущность математического моделирования. Процедура параметрической идентификации статического объекта регрессионным методом.

    лабораторная работа, добавлен 28.03.2016

  • Разработка и численная реализация алгоритма построения ранговой оценки неизвестных параметров регрессии. Аналитическое вычисление асимптотической относительной эффективности рангового метода. Сравнение устойчивости ранговой оценки параметров модели.

    контрольная работа, добавлен 14.07.2016

  • Спецификация модели рентабельности собственного капитала. Оценка параметров модели и влияние мультиколлинеарности факторов. Построение аддитивной модели временного ряда уровня рентабельности собственного капитала, анализ его корреляционного поля.

    курсовая работа, добавлен 17.10.2017

  • Адекватность математической модели и методы её построения, описывающие взаимосвязи между двумя случайными величинами с помощью регрессионных уравнений. Применение методов линейного программирования для моделирования и решения производственных задач.

    практическая работа, добавлен 21.05.2017

  • Эконометрические модели, описываемые системой регрессионных уравнений и тождеств, которые не содержат подлежащих оценке параметров модели, не включая случайной составляющей. Модель спроса и предложения. Одновременная оценка регрессионных уравнений.

    контрольная работа, добавлен 16.04.2014

  • Точечные и интервальные оценки случайной величины. Методика проверки статистических гипотез. Определение коэффициента корреляции, решение уравнения парной регрессии. Построение и анализ регрессионной модели. Моделирование одномерных временных рядов.

    методичка, добавлен 01.09.2012

  • Выбор факторных признаков для построения двухфакторной регрессионной модели по данным десяти кредитных учреждений. Определение параметров модели. Расчет линейного коэффициента множественной корреляции, детерминации, эластичности и их интерпретация.

    контрольная работа, добавлен 09.02.2015

  • Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.

    контрольная работа, добавлен 21.12.2013

  • Построение математической модели предприятия в виде системы массового обслуживания, исследование характеристик построенной системы. Построение имитационной модели функционирования предприятия. Построение критерия эффективности и зависимости от управления.

    контрольная работа, добавлен 14.08.2016

  • Проверка статистической гипотезы значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций, процедура линеаризации в решении нелинейной задачи регрессии. Построение полулогарифмической функции.

    курсовая работа, добавлен 19.03.2015

  • Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.

    контрольная работа, добавлен 06.04.2015

  • Построение регрессионных моделей, определение оптимальной модели с помощью коэффициента детерминации. Вычисление коэффициента корреляции линейной модели, определение средней ошибки аппроксимации, общего коэффициента эластичности и критерия Фишера.

    лабораторная работа, добавлен 18.11.2014

  • Способы сведения нелинейных моделей к линейным. Модели линейные по параметрам и нелинейные по переменным. Построение регрессионной модели, численные методы, линеаризация моделей. Эластичность и логарифмические модели. Возмущение в нелинейных моделях.

    презентация, добавлен 20.01.2015

  • Виды регрессии: одномерная и многомерная, линейная и нелинейная, параметрическая и непараметрическая. Корреляционный и дисперсионный анализ. Построение регрессионной модели курса украинской валюты. Построение учебной таблицы межотраслевого баланса.

    курсовая работа, добавлен 25.01.2014

  • Построение доверительного интервала для коэффициента регрессии модели. Оценка качества модели, ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса на товар в зависимости от его цены, коэффициент эластичности.

    контрольная работа, добавлен 31.03.2015

  • Описание метода построения математической модели обобщенного синхронного генератора с независимыми фазами. Расчет коэффициентов уравнений регрессии методом экстремально-корреляционного смещения коэффициентов. Проверка модели на физическую адекватность.

    статья, добавлен 18.12.2017

  • Подготовка данных и построение модели. Корреляционный анализ экономических показателей. Расчёт частных и множественных коэффициентов корреляции. Построение регрессионной модели и её интерпретация. Проверка исходных данных на мультиколлинеарность.

    курсовая работа, добавлен 16.01.2016

  • Основная цель создания сообщества добавленной стоимости. Проведение расчета коэффициентов регрессии методом наименьших квадратов. Определение зависимости стоимости бренда от количества функциональных единиц. Основные характеристики регрессионной модели.

    статья, добавлен 25.03.2018

  • Построение ковариационной и корреляционной матрицы (количество строк и столбцов равно числу переменных). Статистический анализ построенной регрессии, определение значимости модели и ее параметров, анализ адекватности модели на основе критерия Фишера.

    контрольная работа, добавлен 03.11.2018

  • Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.

    контрольная работа, добавлен 16.07.2019

  • Изучение характеристик модели (коэффициента корреляции, коэффициента детерминации, остатков, значимости F-критерия Фишера). Рассмотрение экономической интерпретации коэффициентов модели. Использование расчета показателя относительной ошибки аппроксимации.

    задача, добавлен 15.04.2014

  • Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.

    курсовая работа, добавлен 04.01.2018

  • Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.

    курс лекций, добавлен 16.05.2016

  • Определение коэффициента детерминации. Исследование сущности оценки значимости параметров модели по критерию Стьюдента. Ознакомление с результатами проверки статистических гипотез. Анализ направлений совершенствования линейной регрессионной модели.

    контрольная работа, добавлен 04.03.2018

  • Анализ проблем построения различных регрессионных моделей. Исследование основных возможностей работы среды Eviews на примере расчета значений описательных статистик, полей корреляции результативного и факторного признаков, эмпирической линии регрессии.

    статья, добавлен 31.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.