Разработка нейронной сети
Алгоритм функционирования нейронных сетей, их внутренняя структура и компоненты, а также критерии оценки качества. Максимизация взаимной информации двух выходов, получающих информацию от двух смежных, не пересекающихся областей одного изображения.
Подобные документы
Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012- 13. Разработка веб-приложения для масштабирования растровых изображений с использованием нейронных сетей
Процесс масштабирования (увеличения) изображения с минимальной потерей в качестве. Анализ способа соединения классического метода масштабирования и метода машинного обучения. Алгоритм работы нейронной сети, разработанной для масштабирования изображений.
дипломная работа, добавлен 01.08.2017 Использование искусственных нейронных сетей для решения большого класса задач обработки информации. Процесс функционирования гибридной радиально-базисной нейронной сети. Обеспечение качества обработки информации в последовательном on-line режиме.
статья, добавлен 19.06.2018- 15. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Изучение механизмов функционирования отдельных нейронов и их наиболее важного взаимодействия, для познания процессов поиска, передачи и обработки информации, происходящей в нейронной сети. Синапс как структура и функциональный узел между двумя нейронами.
статья, добавлен 09.06.2021Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.
реферат, добавлен 22.03.2019- 22. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 - 23. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Предложен формальный алгоритм построения полносвязной части нейросетевого классификатора. Описаны подходы к подбору гиперпараметров. При использовании данного алгоритма удалось снизить общее количество настраиваемых параметров полносвязной нейронной сети.
статья, добавлен 02.04.2019Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012