Распознавание образов с помощью нейронных сетей
Практические приложения распознавания образов. Выработка правил классификации самолетов для бомбардировщиков и истребителей в зависимости от их максимальной скорости и максимального взлетного веса. Обучение по алгоритму обратного распространения ошибки.
Подобные документы
Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Сущность понятий "распознавание", "универсальное множество", "образ", "решающее правило", "адаптация" и "обучение". Примеры задач распознавания образов. Перебор, анализ характеристик образа, использование искусственных нейронных сетей при распознавании.
контрольная работа, добавлен 20.12.2012Анализ классической схемы математического моделирования. Методы распознавания объектов, сигналов, ситуаций, явлений и процессов. Характеристика задач распознавания образов и их типы. Использование искусственных нейронных сетей для распознавания образов.
реферат, добавлен 03.11.2016Описание разработанной методики синтеза импульсных рекуррентных нейронных сетей в составе машины неустойчивых состояний для решения задачи распознавания динамических образов в рамках парадигмы резервуарных вычислений. Входные данные и их предобработка.
статья, добавлен 15.01.2019Понятие "распознавание образов". Особенности разработки математической модели распознавания образов в кибернетике. Общая характеристика задач распознавания образов и их основные типы. Методы и принципы, применяемые в этой сфере вычислительной техники.
контрольная работа, добавлен 30.07.2018Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.
реферат, добавлен 26.04.2016Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Создание шаблона, который позволит студенту приобрести необходимые знания для создания, обучения и стимуляции нейронной сети. Проектирование приложения по визуализации образов букв русского алфавита. Шаблоны букв, созданные в графическом редакторе.
статья, добавлен 19.12.2017Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.
дипломная работа, добавлен 21.09.2018Особенности разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Реализация методов для обнаружения и локализации текстовых областей, распознавания символов с помощью сверточных нейронных сетей.
статья, добавлен 23.02.2016Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.
контрольная работа, добавлен 26.05.2016Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.
курсовая работа, добавлен 26.08.2010Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Основополагающие определения исследуемой области. Современное состояние теории распознавания образов и методы, используемые в данном процессе. Выбор метода распознавания для получения значений показателей со снимка кристаллографии ротовой жидкости.
статья, добавлен 01.09.2018Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.
статья, добавлен 26.11.2017Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019