Использование информационных характеристик потока импульсных сигналов для обучения спайковых нейроных сетей
Описание модели динамического нейрона. Разработка новых методов обучения нейронных сетей, генерирующих спайки. Анализ аспектов функционирования нейрона, как детектора временных последовательностей сигналов. Исследование задач обучения нейрона с учителем.
Подобные документы
Анализ модели нейрона, обладающей возможностью запоминания значения специально вводимого параметра состояния нейрона. Механизм реализации двухуровневой схемы эволюционирования нейронных сетей. Описание предлагаемых алгоритмов их функционирования.
статья, добавлен 19.12.2017Ознакомление со структурной схемой нейрона. Анализ методов отражения сути биологических нейронных систем. Исследование сравнительных характеристик нейрокомпьютеров и традиционных компьютеров. Рассмотрение формальной модели искусственного нейрона.
курсовая работа, добавлен 25.01.2015Основные понятия об искусственных нейронных сетях, дискретных преобразованиях Фурье и потоковых кодированиях информации. Формальная модель нейрона Мак-Каллока-Питтса и нейрона с альтернативными синапсами. Дискретное преобразование Фурье. Метод Хебба.
автореферат, добавлен 08.02.2013Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
дипломная работа, добавлен 07.08.2018Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.
дипломная работа, добавлен 14.12.2019Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
статья, добавлен 29.01.2016Исследование понятия "искусственный нейрон". Характеристика модели нейрона Маккалока-Питтса. Моделирование логических операций "конъюнкция" и "дизъюнкция", оценка невозможности решения проблемы "исключающего или" с помощью нейрона с двумя входами.
лабораторная работа, добавлен 19.06.2022Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.
дипломная работа, добавлен 26.08.2016Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Определение видов нейронных сигналов, методики обучения и тестирования в зависимости от типа используемой автономной навигационной системы. Рассмотрение случаев, когда счисление ведётся на основе данных от лага, гирокомпаса или инерциальной системы.
статья, добавлен 28.10.2018Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Искусственный интеллект как новая информационная революция. Некоторые сведения о мозге. Основы теории нейроподобных сетей. Схема строения нейрона как элементарного звена. Нейроподобный элемент, который используется при моделировании нейронных сетей.
контрольная работа, добавлен 21.10.2017Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020