О структуре AP-многообразия на кораспределении Сасакиева многообразия
Исследование структуры, естественным образом возникающей на распределениях нулевой кривизны сасакиевых многообразий. Характеристика понятия кососимметрического тензора. Преобразование компонент допустимого тензорного поля в адаптированных координатах.
Подобные документы
Рассмотрение понятия внутренней связности, определение тензора кривизы Схоутена и изучение его свойств. Изучается строение тензора Схоутена SQS-многообразия. Определение продоложенной почти контактной метрической структуры на распределении многообразия.
статья, добавлен 15.07.2018Проведение исследования контактного метрического многообразия со структурой произведения специального вида. Изучение понятия внутренней связности и определение тензора кривизны Схоутена. Характеристика коэффициентов внутренней линейной связности.
статья, добавлен 17.07.2018Внутренняя связность и N-связность. Равенство, характеризующее многообразие Кенмоцу. Структура многообразия Кенмоцу. Определение допустимых тензорных полей. Контактная метрическая структура. Фундаментальная форма структуры кососимметрического тензора.
статья, добавлен 11.11.2018Разработка теоремы, утверждающей, что заданная структура определяет на многообразии D структуру косимплектического Би-метрического многообразия тогда, когда распределение D многообразия M является распределением нулевой кривизны. Доказательство теоремы.
статья, добавлен 02.03.2018Понятие допустимой (почти) пара-гиперкомплексной структуры. Субримановы многообразия контактного типа с распределением нулевой кривизны. Внутренняя линейная связность. Коэффициенты внутренней метрической связности. Нулевой тензор кривизны Схоутена.
статья, добавлен 03.03.2018С помощью связности, заданной над распределением субфинслерова многообразии M контактного типа с нулевым тензором кривизны Схоутена, на тотальном пространстве векторного расслоения определение контактной метрической структуры - структуры Кенмоцу.
статья, добавлен 21.01.2018Алгебра Лейбница как векторное пространство с билинейным произведением, в котором выполняется известное тождество. Пример нинельпотентного многообразия алгебр Лейбница с условием энгелевости порядка р. Его использование для поля нулевой характеристики.
статья, добавлен 31.05.2013Исследование конечной базируемости многообразий коммутативных алгебр Лейбница-Пуассона полиномиального роста в случае основного поля нулевой характеристики, их ограничение полиномом. Исследование частных случаев задачи, доказательство основных теорем.
статья, добавлен 31.05.2013Описание графической теории и алгоритма машинного определения кривизны плоской кривой. Дополнительный метод решения инженерных задач через графические вычисления. Определение параметров кривизны (эволюты) эллипса ввиду отсутствия его нулевых точек.
статья, добавлен 03.12.2018Математическое моделирование распространения света. Унитарное преобразование Гамильтониана. Дифференцирование по параметру деформации. Уравнение нулевой кривизны. Интегрирование с помощью эпсилон-динамики. Первые члены асимптотических разложений.
дипломная работа, добавлен 15.12.2015Исследование метода доказательства вероятностных неравенств, основанный на использовании рекурсивно определяемых функций. Методика разработки и решения задачи, естественным образом возникающей в связи с вопросом об усилении неравенства Розенталя.
статья, добавлен 31.05.2013Рассмотрение почти контактных метрических многообразий с нулевым тензором Схоутена. Определение дифференцирования допустимых тензорных полей. Использование адаптированных координат. Векторные поля линейно независимые в области определения нужной карты.
статья, добавлен 02.03.2018Теорема об интегральных многообразиях со сменой устойчивости на случай векторной быстрой переменной. Условия существования склеивающей функции. Построение интегрального многообразия со сменой устойчивости систем с векторной быстрой, медленной переменной.
статья, добавлен 31.05.2013Многочлен, задающий изолированную особенность. Изоморфизм фробениусовых многообразий теории Саито. Зеркальная симметрия для простых эллиптических особенностей с действием группы. Аксиоматическое определение многообразия фробениусовой пары многочленов.
диссертация, добавлен 28.12.2016Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.
реферат, добавлен 21.06.2016Особенность определения годографа вектора-функции. Характеристика нахождения выражения дифференциала дуги. Вычисление кривизны линии, заданной параметрически и уравнением в полярных координатах. Изучение эвольвентного зацепления математиком Л. Эилером.
лекция, добавлен 28.01.2016Использование метода присоединенных G-структур в сочетании с методом инвариантного исчисления Кошуля. Формулы преобразования структурного и виртуального тензоров эрмитовой структуры относительно голоморфно 2-геодезических преобразований линейных типов.
автореферат, добавлен 17.12.2017Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.
курс лекций, добавлен 02.05.2014Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.
статья, добавлен 26.04.2019Анализ критического обсуждения проблемы статистического вывода и методологии проверки нулевой гипотезы. Рассмотрение альтернатив, предлагающихся в настоящее время для преодоления проблем, вызванных использованием методологии проверки нулевой гипотезы.
статья, добавлен 18.06.2018Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.
контрольная работа, добавлен 01.09.2017Визначення основних диференціальних характеристик скалярних і векторних полів складної структури на основі використання положень теорії поля у загальних криволінійних тороїдальних координатах, що дозволяє складати геометричні моделі фізичних процесів.
автореферат, добавлен 28.07.2014Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.
книга, добавлен 25.11.2013Характеристика методов обработки экспериментальных данных. Оценка распределений, проверка гипотез о распределениях. Оценка математического ожидания и дисперсии случайной величины. Расчет доверительных интервалов для математического ожидания и дисперсии.
контрольная работа, добавлен 26.10.2017Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.
дипломная работа, добавлен 18.09.2015