Нейросетевое моделирование: принципы, алгоритмы, приложения

Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.

Подобные документы

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.

    дипломная работа, добавлен 12.01.2012

  • Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).

    курсовая работа, добавлен 04.04.2009

  • Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.

    статья, добавлен 03.02.2021

  • Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.

    курс лекций, добавлен 17.01.2011

  • Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.

    курс лекций, добавлен 08.02.2013

  • Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.

    диссертация, добавлен 24.05.2018

  • Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.

    статья, добавлен 12.07.2021

  • Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.

    отчет по практике, добавлен 18.02.2019

  • Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.

    статья, добавлен 01.03.2017

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Разработка системы, производящей кластеризацию объектов по ряду признаков. Выявление кластеров (групп) входных векторов, обладающих некоторыми общими свойствами. Идея векторного квантования. Обучение сети Кохонена. Конкурирующая функция активации.

    контрольная работа, добавлен 13.01.2017

  • Организация, принципы построения и функционирования компьютерных сетей. Общие принципы построения сетей. Сетевые топологии. Элементы теории массового обслуживания. Алгоритмы поиска кратчайшего пути. Проектирование локальных сетей, базовые протоколы.

    отчет по практике, добавлен 07.04.2023

  • Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.

    курсовая работа, добавлен 22.06.2011

  • Общие принципы построения и архитектура вычислительных сетей. Методы и средства передачи данных. Стандарты построения локальных сетей. Топология вычислительной сети. Протоколы и стеки. Организация сетевого взаимодействия. Алгоритмы маршрутизации.

    курс лекций, добавлен 01.12.2013

  • Трудности алгоритма обучения персептрона. Методика вычисления выходов слоя Кохонена до применения активационной функции. Нейрочип – программируемое устройство, которое имеет операционные узлы для выполнения операций, свойственных нейронным сетям.

    курс лекций, добавлен 17.01.2022

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.

    статья, добавлен 26.04.2017

  • Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.

    методичка, добавлен 26.11.2015

  • Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.

    статья, добавлен 29.04.2017

  • Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.

    учебное пособие, добавлен 09.09.2012

  • Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.

    дипломная работа, добавлен 30.08.2016

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.

    статья, добавлен 29.07.2018

  • Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

    реферат, добавлен 08.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.