Гидравлические потери энергии. Режимы течения жидкости. Число Рейнольдса. Ламинарный режим течения жидкости. Формула Стокса. Закон Гагена-Пуазейля
Ламинарный и турбулентный режим движения жидкости. Условия Рейнольдса по переходу ее из одного состояния в другое. Закон Стокса о распределении скоростей жидкости внутри трубы. Расчет потерь энергии в гидравлической системе по закону Гагена-Пуазейля.
Подобные документы
Уравнение Бернулли для реальной вязкой жидкости. Режимы течения жидкости в трубах и классификация видов подобия. Ламинарный режим течения в круглой трубе. Движение жидкости в капиллярах. Особые случаи ламинарного течения. Оценка коэффициента трения.
контрольная работа, добавлен 01.08.2015Безразмерное число Рейнольдса. Общий вид установки для исследования режимов течения жидкости. Коэффициент динамической вязкости, плотность жидкости. Три основных режима течения: ламинарный, переходный и турбулентный. Краткий анализ результатов опытов.
лабораторная работа, добавлен 24.05.2017Ламинарный и турбулентный режимы движения жидкости, различающиеся по характеру поведения отдельных частиц. Критическое число Рейнольдса, соответствующее моменту смены режимов движения. Описание экспериментальной установки, порядок выполнения работы.
реферат, добавлен 18.05.2010Режимы течения жидкостей. Физический смысл числа Рейнольдса. Особенности турбулентного и ламинарного режимов течения жидкости, условия их возникновения. Начальный участок ламинарного течения, формула Шиллера. Кинематический коэффициент вязкости жидкости.
лекция, добавлен 19.06.2015Оценка ламинарного и турбулентного режима движения жидкости, числа Рейнольдса и его критического значения. Особенности осредненных скоростей и напряжений. Исследование различных теорий турбулентности. Пульсационные составляющие турбулентных потоков.
реферат, добавлен 26.09.2017Механические проявления вязкости жидкости. Закон силы трения. Течение Пуазейля и формула Стокса. Понятие числа Рейнольдса и парадокс Даламбера. Превышение гидродинамического напора. Обтекание тела без сопротивления. Переход к турбулентному слою.
курс лекций, добавлен 10.10.2014Дифференциальные уравнения движения идеальной жидкости (уравнения Эйлера). Уравнение Бернулли для идеальной жидкости. Основные режимы движения жидкости: ламинарный и турбулентный. Местные потери напора (удельной энергии). Гладкие и шероховатые трубы.
презентация, добавлен 21.10.2018Понятие о гидродинамике и потоке жидкости. Основные характеристики движения жидкости. Ламинарный и турбулентный гидродинамические режимы движения жидкости. Критерий Рейнольдса как мера соотношения между силами вязкости и инерции в движущемся потоке.
презентация, добавлен 28.09.2013Особенности течения жидкости при ламинарном и турбулентном режимах движения. Определение значения числа Рейнольдса для наблюдаемых режимов движения, его роль для решения задач инженерной гидравлики. Анализ схемы и результатов действия опытной установки.
лабораторная работа, добавлен 09.12.2012- 10. Потери напора
Классификация потерь напора и режимы течения жидкости. Уравнение равномерного движения. Профиль скорости при ламинарном и турбулентном режимах течения. Местные гидравлические сопротивления формулы Вейсбаха. Задачи гидравлического расчёта трубопроводов.
лекция, добавлен 18.03.2014 Гидроаэромеханика и давление в жидкости и газе. Сущность и содержание закона Паскаля. Уравнение Бернулли и следствие из него. Закон сохранение энергии. Ламинарий и турбулентный режимы течения жидкостей. Уравнение неразрывности для несжимаемой жидкости.
презентация, добавлен 28.06.2013Потери энергии (уменьшение гидравлического напора) в движущейся жидкости. Потери напора по длине и в местных гидравлических сопротивлениях, их зависимость от режима движения жидкости. Потери напора при ламинарном и турбулентном течении жидкости.
лекция, добавлен 08.09.2013Гидравлическая жидкость в гидросистемах технологического оборудования. Расчет зависимости потерь энергии от размеров и параметров движения жидкости. Турбулентное течение жидкости в гладких трубах. Процессы, сопровождающие движение жидкости в диффузоре.
лекция, добавлен 21.06.2015Числовые характеристики жидкостей, анализ числа Рейнольдса. Явление пограничного слоя, уравнения Навье – Стокса. Методы моделирования турбулентного движения, программная среда MATLAB. Особенности моделирования течения жидкости в трубах разной формы.
дипломная работа, добавлен 20.08.2020Одномерное движение жидкости в трубе. Режимы движения жидкости, число Рейнольдса, формула Вейсбаха. Длина пути перемешивания. Составление уравнения равновесия суммы проекций внешних сил на ось движения. Расчет местных сопротивлений и скорости потока.
лекция, добавлен 21.09.2017Гидрогазодинамика идеальной жидкости. Преобразование Громеки-Лэмба. Ламинарное и турбулентное течение. Интегрирование уравнения движения для установившегося течения. Функция тока и комплексный потенциал. Изучение теоретических методов гидродинамики.
курсовая работа, добавлен 11.01.2014Слоистое движение жидкости, возникающее при сильном влиянии трения. Воздействие статического давления на твердые тела, находящиеся в поле течения. Ламинарные и турбулентные течения в природе и технике. Вклад русских ученых в изучение турбулентности.
реферат, добавлен 12.11.2010Определение гидравлического сопротивления в трубопроводах круглого сечения при ламинарном движении жидкости в трубе уравнениями Навье-Стокса и Пуазейля. Расчет диаметра трубопроводов. Гидравлическое сопротивление при турбулентном движении по Блаузиусу.
контрольная работа, добавлен 26.01.2017Сущность и виды энергии: потенциальная, кинетическая. Физическая природа гидравлических сопротивлений. Расчет кинетической энергии потока жидкости. Закон сохранения энергии – уравнение Бернулли. Режимы движения жидкости: ламинарное, турбулентное.
презентация, добавлен 20.08.2016Рассмотрение особенностей вычисления дифференциальных уравнений равновесия жидкости (уравнений Эйлера). Характеристика условий основного уравнения гидростатики. Оценка двух режимов движения жидкости. Анализ числа Рейнольдса. Критические числа Рейнольдса.
реферат, добавлен 09.03.2016Математическая модель течения идеальной жидкости, учитывающая структуру турбулентного потока и граничные условия реальной жидкости. Определение гидродинамических параметров моделирования. Нестационарное трехмерное движение вязкой несжимаемой жидкости.
статья, добавлен 25.02.2016Тензорная запись уравнений Эйлера и тензор плотности потока импульса для вязких течений. Уравнения Навье-Стокса в декартовых координатах. Граничные условия к уравнениям движения жидкости. Расчет функций давления и температуры для движения жидкости.
лекция, добавлен 18.03.2014Вязкость как свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. Знакомство со способами определения коэффициента вязкости жидкости методом Стокса. Общая характеристика второго закона Ньютона.
контрольная работа, добавлен 08.09.2015Коэффициент Дарси при ламинарном напорном движении в трубе. Логарифмический закон распределения осредненных скоростей в турбулентном потоке. Распределение осредненных скоростей в гидравлически гладких и шероховатых трубах, применяемых в гидромелиорации.
лекция, добавлен 25.10.2017Элементы молекулярно-кинетической теории. Понятие эффективного диаметра. Расчет коэффициента вязкости вещества. Формула Пуазейля. Вычисление числа Рейнольдса для течения воздуха в трубке. Применение формулы Пуазейля к случаю ламинарного течения газа.
лабораторная работа, добавлен 07.02.2011