Вейвлет-преобразование и анализ временных рядов
Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.
Подобные документы
Разновидности временных рядов. Требования к исходной информации. Стохастические и детерминированные проблемы. Задачи корреляционного анализа. Сравнение последовательностей с помощью корреляции и выявление динамических рядов. Построение временных рядов.
курсовая работа, добавлен 06.06.2012Изучение понятия, видов и особенностей применения вейвлетных функций. Свойства вейвлет-преобразования - линейность, инвариантность относительно сдвига и масштабирования, дифференцирование. Сущность дискретных и непрерывных ортогональных преобразований.
реферат, добавлен 11.05.2013Рассмотрение понятия временных рядов, а также основных задач их анализа. Нахождение трендового компонента и сезонной составляющей. Проверка предположения об остатках. Составление прогноза временного ряда для аддитивной и мультипликативной моделей.
контрольная работа, добавлен 15.10.2017Важнейшие показатели изменения уравнений рядов динамики. Аналитическое выравнивание временных рядов. Моделирование тенденции развития. Сглаживание временных рядов с помощью скользящих средних. Анализ курса доллара по отношению к белорусскому рублю.
курсовая работа, добавлен 24.11.2014Непрерывное преобразование: материнские функции, шкалирование (масштабирование), детализация сигнала. Ортогональные вейвлет функции и их особенности. Каскадный алгоритм формирования масштабных функций. Алгоритм Малата в интерпретации фильтровой обработки.
контрольная работа, добавлен 11.09.2015Моделирование нестационарных неэквидистантных временных рядов по математическому ожиданию и дисперсии. Анализ аппроксимативного метода построения аналитической модели тренда и дисперсии нестационарного временного ряда с помощью ортогональных разложений.
статья, добавлен 31.08.2018Основные виды числовых рядов. Критерий абсолютной сходимости. Особенности разложения элементарной функции в ряд Фурье. Ряд Фурье непериодических функций с заданным периодом. Разложение в ряд Фурье по косинусам и синусам. Ряд Фурье на полупериоде.
реферат, добавлен 12.06.2015Составление частотной карты технологического процесса. Применение методики нахождения кратномасштабного разложения Хаара. Введение в вейвлеты в свете линейной алгебры. Анализ временных рядов. Прогноз и управление. Применение матриц Адамара в разложении.
статья, добавлен 31.08.2018Многоуровневое вейвлет-разложение вектора невязки. Расчеты в математическом пакете Matlab. Разработка итерационных методов и их модификаций. Использование вейвлет-анализа для обработки сигналов и быстрого алгоритма нахождения вейвлет-коэффициентов.
статья, добавлен 27.07.2017Подходы к решению задачи прогнозирования многомерных временных рядов. Обоснование применения деревьев решений для анализа дискретного многомерного временного ряда с неизменными во времени статистическими свойствами. Способы построения деревьев решений.
статья, добавлен 27.02.2019Исследование методики оценки шумовой компоненты во временных рядах и ее удаление, выделение тренда и колебаний c различными периодами. Понятие Т-е и Т-h-е почти периодов для конечных рядов. Достижение гладкости функции, представляющей исходные данные.
статья, добавлен 08.03.2019Вклад Жана Батиста Жозефа Фурье в развитие алгебры. Теория ортогональных рядов в унитарном пространстве с ортонормальным базисом. Основные сведения о коэффициентах и рядах Фурье. Комплексная форма ряда, тригонометрическая система и сходимость рядов.
курсовая работа, добавлен 23.04.2011Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
реферат, добавлен 26.03.2019Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
лекция, добавлен 23.07.2015Способы представления статистической информации и графическое изображение данных. Показатели и прогнозирование рядов динамики, методы их расчёта. Индексный анализ средней тарифной ставки. Выявление и характеристика тенденции развития временного ряда.
курсовая работа, добавлен 19.09.2014Геометрическая интерпретация метода дискриминантного анализа. Число канонических дискриминантных функций. Прогнозирование с использованием временных рядов. Дискриминантный анализ в издательском деле. Экспоненциальное сглаживание и скользящее среднее.
курсовая работа, добавлен 22.09.2016Задача предиктивной кластеризации и прогнозирования хаотических временных рядов на много шагов вперед. Реализация алгоритма прогнозирования. Ограничение ошибки и непрогнозируемые точки. Исследование результатов для финансового ряда и ряда Лоренца.
дипломная работа, добавлен 01.12.2019- 18. Ряды Фурье
Понятие ряда Фурье. Определение коэффициентов, признаки сходимости рядов. Разложение в ряд Фурье периодической, непериодической и тригонометрической функций. Пространство функций со скалярным произведением. Основные типы уравнений математической физики.
курсовая работа, добавлен 28.10.2015 Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.
контрольная работа, добавлен 12.05.2023- 20. Ряды Фурье
Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.
контрольная работа, добавлен 23.04.2011 - 21. Анализ Фурье
Роль анализа Фурье в прикладной математике и технических науках, его применение - приближение непериодических функций с помощью периодических функций. Конечные и комплексные ряды Фурье. Ряды для непрерывного сигнала и сигналов на бесконечном интервале.
курсовая работа, добавлен 17.06.2013 Тригонометрический ряд Фурье и его основные свойства. Сущность теоремы Римана–Лебега. Сдвиг и растяжение основного промежутка. Гармонический анализ непериодических функций. Метод средних арифметических и метод Чезаро. Ряд теорем Карла Вейерштрасса.
учебное пособие, добавлен 28.12.2013Дискретное преобразование Фурье. Уменьшение вычислительных затрат при использовании быстрого преобразование Фурье с прореживанием по времени и по частоте. Процедура объединения, граф "Бабочка", алгоритм с замещением. Применение алгоритмов в радиофизике.
курсовая работа, добавлен 30.03.2015Применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Свойства преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.
статья, добавлен 02.03.2018Теория аппроксимации периодических функций рядами Фурье. Разложение прямоугольного колебания в ряд Фурье. Явление Гиббса при приближении пилообразного сигнала с помощью рядов Фурье. Фильтрация зашумлённого сигнала с помощью быстрых преобразований.
лабораторная работа, добавлен 10.11.2010