Триангуляция Делоне
Использование метода конечных элементов в гидродинамике. Определение триангуляции и условие Делоне. Топологический и геометрический критерий качества треугольных элементов. Особенности итеративного и цепного алгоритмов. Построение диаграммы Вороного.
Подобные документы
Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Сферы применения методов математического моделирования. Широкое применение метода конечных элементов, его основные положения и преимущества. Расчет на компьютере с помощью программы Ansoft Maxwell магнитных полей в спинволновых ферритовых системах.
реферат, добавлен 15.05.2013Рассмотрение существующих методов трехмерной дискретизации пространственных областей (построения тетраэдрических сеток). Ознакомление с описанием шаблонов дискретизации параллелепипеда, шара и цилиндра. Изучение процесса триангуляции параллелепипеда.
курсовая работа, добавлен 29.05.2015Прямые методы построения тетраэдрических сеток в трехмерных областях. Шаблоны дискретизации пространственных областей: триангуляция параллелепипеда, шара и цилиндра. Особенности построения сеток в сложных областях с помощью изопараметрических отображений.
научная работа, добавлен 28.10.2018Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Определение натуральной величины элементов поверхностей. Чертежи разверток пирамидальных и конических поверхностей, выполненные способ триангуляции. Построение способом нормального сечения различных разверток призматических и цилиндрических поверхностей.
методичка, добавлен 01.10.2010Математическое моделирование формоизменения материала в ходе испытания на сжатие с плоской деформацией. Разработка алгоритмов построения матрицы жесткости для вычислений с помощью метода конечных элементов, их реализация в форме программных компонент.
дипломная работа, добавлен 02.09.2018Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.
презентация, добавлен 21.09.2017Формальное содержание и принципы разрешения задачи размещения. Критерий минимума суммарной длины соединений и определение их длины. Типы используемых алгоритмов: конструктивные, итерационные, непрерывно-дискретные, математического программирования.
лекция, добавлен 12.06.2016Применение метода конечных элементов для анализа прочности инструментов. Изучение параметрического моделирования кривых непосредственно в среде разработки Pro/ENGINEER. Использование эвольвентной кривой. Описание и создание окончательного профиля зуба.
статья, добавлен 30.10.2016Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 18.05.2013Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.
контрольная работа, добавлен 24.09.2016- 13. Алгоритм комбинированного метода решения конечноэлементных задач с нелинейностями различного типа
Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.
статья, добавлен 27.05.2018 - 14. Исследование сформированности умений решать геометрические задачи на построение (в третьем классе)
Использование геометрического материала как составной части начального курса математики, создание благоприятных условий для формирования математического и пространственного мышления у обучающихся. Построение, определение положения геометрических объектов.
статья, добавлен 12.04.2019 Постановка задачи, построение характеристической области. Алгоритм построения характеристической области в случае выпуклых объектов, односвязности и многосвязности исходных объектов. Вычислительная сложность алгоритмов. Простой геометрический поиск.
курсовая работа, добавлен 07.03.2012Рассмотрение планарного разбиения дискретного множества точек по Воронову. Обзор основных свойств диаграммы. Определение линейной сложности. Изучение последовательности построения диаграммы. Выявление свойств разбивающей цепи и двухсвязного списка.
презентация, добавлен 06.03.2015Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
реферат, добавлен 21.03.2023Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.
учебное пособие, добавлен 27.08.2017Особенности перебора множества моделей и созданных алгоритмов. Математическое описание некорректно поставленных задач, его определение семейством элементов, заданных в гильбертовых пространствах. Добавление априорных классификационных признаков.
статья, добавлен 30.08.2016- 21. Цилиндр
Определение цилиндра как геометрического тела, ограниченного цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Формулы нахождения элементов скошенного и прямого кругового цилиндра: площади боковой поверхности и оснований.
презентация, добавлен 06.10.2016 Понятие ассоциативного и коммутативного кольца. Использование термина кольцо с единицей при наличии нейтрального элемента для умножения. Построение поля, примеры колец и полей. Кольцо многочленов над полем. Делимость многочленов, разложение на множители.
курсовая работа, добавлен 02.03.2019Понятие и модель абстрактного автомата, общая характеристика, структура и взаимодействие элементов. Типы конечных автоматов и их отличительные особенности, функции. Эквивалентность состояний детерминированного автомата, алгоритм его минимизации.
курсовая работа, добавлен 09.01.2012Применение вариантов эвристических алгоритмов. Недетерминированный конечный автомат. Варианты минимизации недетерминированных конечных автоматов и используемые эвристики. Алгоритм кластеризации ситуаций. Инициализация списка подзадач одним элементом.
статья, добавлен 14.07.2016Геометрический закон распределения, функции его параметров на основе метода достаточных статистик. Интервальная и асимптотически оптимальная оценка неизвестных параметров геометрического закона распределения. Алгоритм проверки статистической гипотезы.
курсовая работа, добавлен 07.12.2009