Полномасштабная математическая модель переноса нейтронов в активной зоне реактора ВВЭР-1000, основанная на методе Монте-Карло и реализованная на многопроцессорных ЭВМ
Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.
Подобные документы
Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.
реферат, добавлен 18.03.2014Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
статья, добавлен 13.12.2013Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.
практическая работа, добавлен 26.12.2016Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Разработка алгоритма, позволяющего исследовать и решать прогнозные задачи фильтрации подземных вод и переноса загрязняющих веществ в пространственной постановке. Совмещение решения уравнений неустановившегося движения жидкости и переноса загрязнителей.
статья, добавлен 20.05.2018Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.
реферат, добавлен 11.03.2014Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.
статья, добавлен 04.03.2012Рассмотрение численных методов решения уравнений переноса и реализация одного из методов решения на языке программирования С/C++ и в пакете MS Excel. Рассмотрение и решение задачи Коши для уравнений переноса. Линейное одномерное уравнение переноса.
курсовая работа, добавлен 03.10.2017Основы моделирования, классификации моделей. Анализ результатов натурных и вычислительных экспериментов. Классические и поисковые методы генерации и использования псевдослучайных чисел. Имитационное и статистическое моделирование, метод Монте-Карло.
дипломная работа, добавлен 13.10.2015Применение метода математического моделирования для решения многих задач в разных областях человеческой деятельности. Основные этапы процесса моделирования. Классификация моделей по признакам поведения объекта. Физическое и математическое моделирование.
реферат, добавлен 24.05.2020Число е - удивительный математический элемент, свойства которого можно наблюдать в решениях определённых задач и окружающем пространстве. Характеристика основных формул, применяющихся для определения данной константы. Сущность метода Монте-Карло.
творческая работа, добавлен 26.04.2019Применение логико-комбинаторного подхода в решении многокритериальных задач структурного синтеза. Построение систем логических уравнений на уровне базовых функций и экземпляров базовых функций. Алгоритм минимизации решений с аддитивными показателями.
статья, добавлен 30.04.2018Анализ локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения, рассматриваемого в простой области. Изучение корректности "в целом" ряда обратных задач для неустановившегося математического равенства.
статья, добавлен 12.05.2018Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012