Построение модели множественной регрессии

Методика определения значений описательных статистик. Понятие среднего арифметического нескольких чисел. Расчет парных и частных коэффициентов корреляции. Порядок составления и разрешения уравнения множественной регрессии в стандартизованном масштабе.

Подобные документы

  • Порядок построения линейного уравнения парной регрессии. Расчет коэффициента парной корреляции и ошибки аппроксимации. Статистическая значимость параметров регрессии и корреляции. Модель множественной регрессии. Коэффициент множественной детерминации.

    контрольная работа, добавлен 10.12.2013

  • Построение матрицы парных коэффициентов корреляции. Выведение уравнения множественной регрессии в линейной форме с полным набором факторов. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

    презентация, добавлен 30.11.2016

  • Построение линейной модели множественной регрессии, оценка адекватности построенного уравнения регрессии. Расчет стандартизованных коэффициентов модели. Распределение стран по кластерам, соотвествующим уровню жизни населения, построение диаграмм.

    контрольная работа, добавлен 11.12.2019

  • Использование Microsoft Excel для расчета матрицы парных коэффициентов корреляции. Анализ коэффициентов эластичности. Расчет стандартной ошибки модели линейной регрессии. Модуль оценки коэффициентов множественной корреляции и линейной детерминации.

    контрольная работа, добавлен 24.05.2009

  • Рассмотрение спецификации моделей множественной регрессии, метода наименьших квадратов для стандартизованного уравнения. Отбор фактор-признаков и выбор уравнения регрессии. Методы вычисления параметров выбранного уравнения множественной регрессии.

    статья, добавлен 30.11.2016

  • Факторы влияния на экономические показатели. Использование множественной регрессии в изучении проблем спроса, доходности акций, функции издержек производства, в макроэкономических расчетах. Оценка параметров линейного уравнения множественной регрессии.

    реферат, добавлен 21.11.2022

  • Матрица парных и частных коэффициентов корреляции, их сравнение; поэтапный регрессионный анализ, проверка данных на наличие мультиколлинеарности. Построение регрессионной модели и её интерпретация; сравнение исходных данных с уравнением регрессии.

    курсовая работа, добавлен 30.08.2012

  • Параметры уравнений регрессии, оценка тесноты связи с показателем корреляции и детерминации. Расчет средней ошибки аппроксимации. Составление матрицы парных и частных коэффициентов корреляции. Определение коэффициента автокорреляции уровней ряда.

    контрольная работа, добавлен 16.11.2014

  • Рассмотрение понятия спецификации и параметризации уравнения регрессии. Оценка уравнения, анализ статической значимости коэффициентов множественной регрессии. Расчет доли объясненной дисперсии, проверка гипотезы о наличии автокорреляции остатков.

    контрольная работа, добавлен 05.03.2016

  • Оценка коэффициентов линейной регрессии по методу наименьших квадратов. Расчет доверительных интервалов для теоретических коэффициентов регрессии. Оценка параметров модели с распределенным лагом. Определения коэффициентов, входящих в уравнения регрессии.

    контрольная работа, добавлен 20.05.2012

  • Технология регрессионного анализа. Коэффициент линейной корреляции. Эмпирическое корреляционное отношение. Построение уравнения регрессии. Применение дисперсионного анализа для оценки качества уравнений регрессии. Коэффициент множественной детерминации.

    лекция, добавлен 10.11.2017

  • Характеристика принципа конкретных количественных и качественных взаимосвязей экономических объектов и процессов с помощью математических и статистических методов. Построение уравнения парной регрессии. Статистический анализ модели и оценка её качества.

    лекция, добавлен 22.07.2014

  • Характеристика целей эконометрического моделирования. Линейная модель парной регрессии и корреляции. Исследование особенностей системы эконометрических уравнений. Основные аспекты отбора факторов при построении уравнения множественной регрессии.

    курс лекций, добавлен 08.02.2015

  • Модели парной и множественной регрессии. Аспекты множественной регрессии: мультиколлинеарность, фиктивные переменные, частная корреляция. Гетероскедастичность и корреляция по времени. Обобщенный метод наименьших квадратов. Инструментальные переменные.

    учебное пособие, добавлен 12.09.2012

  • Матрица коэффициентов парной корреляции, характеристика показателей финансово-хозяйственной деятельности предприятия. Результаты построения моделей парных регрессий. Регрессионный анализ множественной регрессии. Нормирование и контроль оборотных средств.

    реферат, добавлен 20.04.2019

  • Характер расположения точек в корреляционном поле. Построение моделей линейной регрессии для несгруппированных данных. Оценка надежности коэффициента корреляции, адекватности уравнения регрессии. Коэффициент детерминации, его смысловое значение.

    лабораторная работа, добавлен 21.01.2015

  • Построение поля корреляции для заданной зависимости. Определение уравнения регрессии степенной формы и интерпретация параметров. Вычисление индекса корреляции и его основной смысл. Средняя ошибка аппроксимации. Расчет стандартной ошибки регрессии.

    задача, добавлен 27.11.2013

  • Оценка выборочного коэффициента корреляции. Построение корреляционного поля. Уравнение линейной регрессии. Оценка тесноты корреляционной зависимости. Определение среднего квадратического отклонения. Статистическая значимость коэффициентов регрессии.

    контрольная работа, добавлен 14.06.2014

  • Построение моделей линейной регрессии для сгруппированных данных по методу наименьших квадратов и с использованием коэффициента линейной корреляции. Оценка надежности уравнения регрессии. Распределение статистической выборки в корреляционном поле.

    лабораторная работа, добавлен 21.01.2015

  • Построение модели регрессии. Анализ качества модели и анализ остатков. Корреляционный и визуальный анализ взаимосвязи показателей. Расчет коэффициента корреляции и проверка статистической его значимости. Особенности анализа коэффициентов регрессии.

    контрольная работа, добавлен 17.04.2014

  • Овладение способами выбора модельного уравнения нелинейной регрессии. Рассмотрение характера расположения точек в корреляционном поле. Расчет параметров уравнения, проверка его надежности. Построение кривой нелинейной регрессии в системе координат.

    лабораторная работа, добавлен 21.01.2015

  • Экономическая интерпретация коэффициента регрессии, порядок его расчета. Определение остаточной суммы квадратов и оценка дисперсию остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Построение графика регрессии.

    контрольная работа, добавлен 20.01.2014

  • Параметры уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Проверка уравнения регрессии с помощью F-критерия Фишера. Прогнозирование среднего значения показателя. Коэффициенты детерминации и средние ошибки аппроксимации.

    контрольная работа, добавлен 14.01.2015

  • Статистический анализ уравнения регрессии, формула определения критерия Фишера. Проверка коэффициентов на значимость, вычисление частных коэффициентов детерминации и эластичности. Анализ регрессионного уравнения, использование преобразованной матрицы.

    контрольная работа, добавлен 05.04.2020

  • Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Расчет ошибки прогноза и доверительного интервала.

    контрольная работа, добавлен 15.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.