Основы интегрирования
Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.
Подобные документы
Рассмотрение теоретических основ алгебры. Теорема о разложении правильной рациональной дроби на сумму простейших дробей. Интегрирование целых рациональных функций. Различные способы нахождения и математического анализа неопределенного интеграла.
лекция, добавлен 17.01.2014Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Простейшие рациональные дроби и их интегрирование. Интегралы от иррациональных функций.
лекция, добавлен 25.06.2021Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
презентация, добавлен 18.09.2013Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.
презентация, добавлен 26.09.2017Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.
презентация, добавлен 18.09.2013Понятие и общая характеристика неопределенного интеграла, его основные свойства и функции. Сущность и особенности рациональной дроби, порядок и принципы ее интегрирования. Сходимость несобственных интегралов II рода. Изучение дифференциальных уравнений.
лекция, добавлен 02.05.2012Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
доклад, добавлен 23.04.2013- 9. Интегралы
Понятие первообразной функции. Теорема о первообразных. Неопределенный интеграл, его свойства. Таблица неопределенных интегралов. Замена переменной и интегрирование по частям в неопределенном интеграле. Разложение дробной рациональной функции на дроби.
реферат, добавлен 29.06.2008 Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.
курсовая работа, добавлен 14.06.2022Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.
реферат, добавлен 17.01.2011Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.
контрольная работа, добавлен 11.05.2012Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.
учебное пособие, добавлен 24.08.2012Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.
контрольная работа, добавлен 25.09.2017Виды элементарных дробей и необходимость применения разложения дроби на простейшие. Алгоритм метода неопределенных коэффициентов. Использование метода частных значений в случае, если знаменатель представляет собой произведение линейных множителей.
лекция, добавлен 17.07.2014Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.
контрольная работа, добавлен 03.03.2014Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
контрольная работа, добавлен 22.12.2015Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.
конспект урока, добавлен 18.04.2016Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
реферат, добавлен 21.03.2023Рассмотрение дробно-рациональной функции; построение ее графика. Альтернативные методы построения графиком y=1/x. Ознакомление с методом неопределенных коэффициентов. Изучение правил интегрирования правильной и неправильной дробно-рациональной функций.
курсовая работа, добавлен 28.12.2018Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.
лекция, добавлен 03.04.2019Задачи, приводящие к понятию определенного интеграла, сфера его применения и геометрический смысл. Вычисление площади плоской фигуры. Объёмы тел вращения. Характеристика кривых, встречаются при вычислении определенного интеграла. Исчисление длины дуги.
дипломная работа, добавлен 14.05.2011