Дискретная математика
Свойства, которыми обладают бинарные отношения на множестве натуральных чисел. Область определения предиката. Построение матрицы смежности. Рефлексивное, антисимметричное и транзитивное отношение перпендикулярности на множестве прямых в пространстве.
Подобные документы
Отношения бинарные и N-арные. Декартово произведение. Бинарные отношения. Операции над бинарными отношениями. Функциональные отношения. Бинарные отношения на множестве. Матрица, представляющая функциональное отношение. Отношение эквивалентности.
реферат, добавлен 21.08.2008Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.
курсовая работа, добавлен 05.12.2019Бинарные отношения в школьном курсе математики. Отношение как одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении. Бинарные отношения: рефлексивность, симметричность, транзитивность, параллельность.
презентация, добавлен 23.01.2021Отношения, связывающие элементы множеств. Свойства бинарных отношений. Функциональные отношения. Отношения на заданном двухэлементном множестве. Выделение отношений эквивалентности и построение классов эквивалентности. Классификация отношений порядка.
лабораторная работа, добавлен 17.09.2019Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.
курсовая работа, добавлен 18.05.2016Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.
реферат, добавлен 25.05.2016Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
статья, добавлен 03.03.2018Понятие частично упорядоченного множества для современной теоретико-множественной математики. Теорема, позволяющая по формуле найти число линейно упорядочиваемых бинарных отношений на множестве из n элементов. Получение рекуррентной формулы уравнения.
статья, добавлен 30.07.2017Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
контрольная работа, добавлен 25.10.2013- 11. Пространство Rn
Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.
курсовая работа, добавлен 17.01.2011 Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.
лекция, добавлен 27.04.2017Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.
контрольная работа, добавлен 11.12.2012- 14. Числовые системы
Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.
реферат, добавлен 29.10.2013 Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013Характеристика основных методов упрочения выражения, сущность закона отрицания и дистрибутирования. Порядок решения задач с помощью диаграммы Эйлера-Венна. Особенности построения таблицы истинности. Матрицы инцидентности и смежности, их сущность.
задача, добавлен 24.02.2014Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
курс лекций, добавлен 06.08.2017Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.
учебное пособие, добавлен 18.01.2015Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015Очерк профессорской деятельности доктора наук в области прикладной математики - П.Л. Чебышева. Изучение теорем о множестве алгебраических многочленов и приближение тригонометрических полиномов. Свойства минимальной нормы многочленов по Чебышеву.
реферат, добавлен 03.11.2013Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.
лекция, добавлен 29.09.2013Использование десятичной системы счисления как один из наиболее важных факторов, от которых зависят основные свойства редукции натуральных чисел. Специфические особенности доказательства операции суммарного редуцирования любого натурального числа.
статья, добавлен 25.06.2018Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.
реферат, добавлен 27.03.2015