Вычисление интегралов
Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.
Подобные документы
Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Особенность вычисления двойного интеграла в декартовой и полярной системе координат. Ограничение области интегрирования сверху и снизу гладкими поверхностями и проектирование на плоскость. Определение объема тела, ограниченного параболическим цилиндром.
презентация, добавлен 27.09.2017Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.
курсовая работа, добавлен 21.05.2012Сущность и физический смысл тройного интеграла как предела интегральной суммы, полученной путем разбиения объема на элементарные области. Вычисление повторных интегралов при учете конфигурации области интегрирования в зависимости от системы координат.
практическая работа, добавлен 18.10.2013Решение задач на доказательство теоремы о среднем для двойного и тройного интеграла. Построение области интегрирования. Вычисление площади плоской фигуры, ограниченной заданными линиями, и объема тела, ограниченного определенными поверхностями.
контрольная работа, добавлен 09.01.2014Изучение свойств определенного интеграла. Описание точных методов их вычисления по формулам Ньютона-Лейбница, интегрирования по частям и путем замены переменной в определенном интеграле. Описание приближенных методов вычисления определённых интегралов.
реферат, добавлен 01.12.2016Масса неоднородного тела. Тройной интеграл и его вычисление. Преобразование тройных интегралов. Декартовы, сферические и цилиндрические координаты. Установление связи между сферическими и декартовыми координатами. Практика применения тройных интегралов.
реферат, добавлен 12.03.2010Наибольшее и наименьшее значение функции. Поиск неопределенных интегралов, проверка правильности результата с помощью дифференцирования. Изменение порядка интегрирования в двойном интеграле. Решение системы дифференциальных уравнений операционным методом.
контрольная работа, добавлен 19.03.2012Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.
учебное пособие, добавлен 24.08.2012Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.
контрольная работа, добавлен 18.12.2012Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.
лекция, добавлен 18.10.2013Определение двойного интеграла и его свойства. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат. Определение прямоугольной и произвольной областей интегрирования.
лекция, добавлен 28.03.2020Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Задача о вычислении объема при помощи двойного интеграла. Примеры вычислений двойного интеграла в декартовых координатах и в полярной системе. Тройной интеграл в цилиндрической системе координат: нахождение объема тела, ограниченного параболоидами.
презентация, добавлен 26.09.2017Численные методы и их использование для вычисления кратных интегралов. Метод ячеек как один из простейших способов вычисления интеграла. Оценка погрешности метода ячеек. Текст и блок-схема программы. Выполнение программы в математическом пакете.
контрольная работа, добавлен 30.10.2010- 18. Тройной интеграл
Тройные интегралы от непрерывных и разрывных функций, их свойства, физический смысл, среднее значение. Тройной интеграл в цилиндрической и в сферической системе координат. Вычисление объёма, массы, центра тяжести тела с постоянной и переменной плотностью.
курсовая работа, добавлен 30.07.2017 Расчет центра тяжести однородной фигуры, ограниченной линиями. Проверка формулы Грина для интеграла. Исследование рядов на сходимость. Изменение порядка интегрирования, вычисление интеграла. Расчет области сходимости степенного ряда с заданной точностью.
контрольная работа, добавлен 27.06.2017Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.
методичка, добавлен 28.10.2015Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.
контрольная работа, добавлен 10.06.2014Определение объема тела, ограниченного поверхностями с помощью тройного интеграла. Круг в системе координат. Рассмотрение особенностей размещения поверхностей в пространстве. Правила вычисления двойного интеграла. Расчет объема параболического цилиндра.
контрольная работа, добавлен 29.11.2015Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
презентация, добавлен 17.09.2013