Предикатная логика на основе секвенциального исчисления, предназначенная для моделирования непрерывных шкал
Сущность бесконечнозначной предикатной логики, имеющей связку (нечеткое неравенство), близкой к импликации Лукасевича. Анализ ряда свойств секвенциального исчисления, в том числе свойств, служащих основой для процедур автоматического поиска доказательств.
Подобные документы
Предмет математической логики. Недостатки формальной логики. Сущность понятия "высказывание". Сущность отрицания, конъюнкции. Алгебра логических значений. Главные особенности импликации. Эквивалентность как вид выражения операции. Блок управления памятью.
реферат, добавлен 21.10.2012Понятие, сущность и характеристика математики и философии как науки. Влияние математики на философию, последствия их роль и описание. Соотношение математики и логики, а также полученные результаты. Понятие об иррациональном числе, особенности исчисления.
реферат, добавлен 08.02.2009Определяются фундаментальные понятия матричного исчисления: линейно зависимые и независимые совокупности строк (столбцов) матрицы, ранг матрицы, сумма и произведение матриц, определитель матрицы, обратная матрица. Свойства определителей алгебры логики.
статья, добавлен 30.08.2020Сущность и значение предикатов, отношений. Определение кванторов, их виды и взаимосвязи. Построение исчисления предикатов. Специфика логического следования, выводимость и доказуемость. Категорический силлогизм и другие умозаключения дедуктивной логики.
курсовая работа, добавлен 08.02.2011Логика как самостоятельная наука. Идея построения логики на математической основе. Основные объекты математической логики, высказывания, логическая процедура и правильность. Отделение правильных схем рассуждения от неправильных и систематизация первых.
презентация, добавлен 17.04.2013Основные понятия алгебраической логики. Проведение отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции над высказываниями. Перевод текстов на язык предикатов, определение их истинности. Этапы формирования законов логики в трудах Аристотеля.
контрольная работа, добавлен 01.02.2012Логика – наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений. Джордж Буль - создатель алгебры логики. Основные логические связки. Таблица истинности. Выполнимость формул.
презентация, добавлен 05.03.2012Определение булевой алгебры (алгебры логики, алгебры суждений) – раздела математики, в котором изучаются логические операции над высказываниями. Характеристика логических операций: отрицания, конъюнкции, дизъюнкции, импликации, а также эквиваленции.
презентация, добавлен 06.02.2020Основные разделы исчисления высказываний: понятие выводимости, естественного вывода, отношения эквивалентности. Использование аксиоматического метода в построении математических теорий. Полное изложение исчисления высказываний. Понятие выводимости.
методичка, добавлен 31.05.2012Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Логика как самостоятельная наука. История становления классической математической логики. Виды и направления в развитии неклассической логики. Учение о силлогизме. Становление неформальной логики. Основные разделы современной математической логики.
контрольная работа, добавлен 17.06.2013Определение и анализ сущности комплементарной логики, которая создаётся путём синтеза экстенсиональной и интенсиональной логики. Характеристика особенностей интерпретации редукции волновой функции на основе принципа психофизического параллелизма.
статья, добавлен 25.12.2021Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014- 14. Булева алгебра
Предмет математической логики. Калькуляция высказываний высказывание. Сущность эквивалентности конъюнкции. Алгебра логических значений. Выражение логической операции с помощью отрицания и импликации. Применение булевой алгебры в математической логике.
реферат, добавлен 18.09.2012 Определение взаимодействия законов логики и правил алгебры. Основные понятия и термины двух наук – логики и алгебры. Примеры логических и алгебраических выражений. Математический анализ и математическая логика выдающегося ученого Огастесе де Моргана.
реферат, добавлен 23.12.2017Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.
лекция, добавлен 15.11.2017- 17. Основы логики
Ознакомление с основными понятиями и методами формальной логики и применению их при построении умозаключений. Характеристика основных типичных ошибок в организации мыслительного процесса, в осуществлении системы процедур доказательства и опровержения.
методичка, добавлен 16.05.2017 Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
курсовая работа, добавлен 27.02.2020- 19. Аристотель
Краткая биографическая справка из жизни Аристотеля. Логика как наука о способах доказательств и опровержений. Теоретическая и практическая философия. Главные задачи логики. Произведения Аристотеля "Категории", "Топика" и "О софистических опровержениях".
реферат, добавлен 18.06.2013 История интегрального исчисления и вопросы интегрального исчисления. Вклад физики в науку интегрального исчисления. Дифференциальное и интегральное исчисление и его применение. Определение, свойства интеграла. Криволинейная трапеция, стандартные картинки.
курсовая работа, добавлен 21.11.2009Обзор одного из направлений векторного исчисления – геометрического. Характеристика сведений о научной деятельности Германа Грассмана. Анализ основ его учения о протяженности, расширении свойств евклидовой плоской геометрии на n-мерное пространство.
статья, добавлен 26.04.2019Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013- 24. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
курс лекций, добавлен 22.01.2013 Описание, отличительные черты позиционных и непозиционных систем счисления. Особенности древнеегипетской десятичной системы, сущность смешанных систем счисления. Специфика восьмеричной, шестнадцатеричной, десятичной и единичной систем исчисления.
статья, добавлен 25.07.2018