Представление графов
Понятие и матричное представление графов. Определение матрицы смежности и матрицы идентичности. Алгоритм "умножения матриц". Применение алгоритма Флойда-Уоршалла для поиска кратчайших путей в графе. Построение минимального скелета нагруженного графа.
Подобные документы
Решение прикладных задач при помощи процедур анализа графовых моделей. Задачи поиска кратчайших путей на основе алгоритма Флойда и нахождения минимального охватывающего дерева. Масштабирование и распределение подзадач обработки графов по процессорам.
лекция, добавлен 17.09.2013Понятие графов и их виды: ориентированные, неориентированные и смешанные. Матричное и теоретико-множественное представление графов. Существующие способы представления графов в вычислительной технике. Алгоритм Беллмана-Форда и алгоритм Флойда-Уоршелла.
курсовая работа, добавлен 13.10.2017Понятие и представление графов. Матрица смежности как один из самых распространенных способов хранения графа. Расчеты временной сложности хранения графа списком дуг. Обходы и поиск кратчайшего пути в графах, алгоритмы Дейкстры и Флойда-Уоршелла.
реферат, добавлен 18.03.2016Реализация алгоритмов обработки графовых структур. Поиск кратчайших путей между вершинами, проверка связности. Алгоритм Флойда-Уолша. Выбор необходимого алгоритма и структуры для представления графов. Построение остовых деревьев минимальной стоимости.
лабораторная работа, добавлен 26.03.2019Исследование эффективности алгоритма поиска в графе в ширину. Матрицы инциденций для графов. Анализ алгоритма поиска в графе. Основные входные и выходные данные, процедуры, их обозначение в листинге программы. Текст программы на языке TURBO PASCAL.
курсовая работа, добавлен 26.04.2015Анализ понятия граф. Рассмотрение вершин, достижимости и длины пути. Классификация и примеры графов. Способы их представления. Преимущества матрицы смежности и иерархического списка. Исследование алгоритма Дейкстры. Создание графа в программе "ProGraph".
презентация, добавлен 20.04.2015Общие сведения о графах. Реализация алгоритма Флойда. Графы и способы их представления. Пути и циклы в графах. Программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа. Пример применения алгоритма Флойда на практике.
курсовая работа, добавлен 19.11.2011Анализ алгоритма рекуррентной формулы для вычисления определителей предфрактальных графов с полными затравками, сохраняющими смежность старых ребер в траектории. Определитель матрицы смежностей графа. Задача вычисления определителей матриц смежности.
статья, добавлен 29.04.2017Изучение способа описания среды с препятствиями и результатов решения задачи поиска кратчайшего пути перемещения груза автокраном при помощи алгоритмов на графах. Сравнение способов создания матрицы смежности графа, описывающей среду, по трудоемкости.
статья, добавлен 31.08.2018Обработка графов, задача поиска всех кратчайших путей. Последовательный алгоритм Флойда. Пример нахождения минимального охватывающего дерева. Пример разделения нерегулярной сети и соответствующей сети граф. Сущность метода рекурсивного деления пополам.
учебное пособие, добавлен 17.09.2013Разработка программного обеспечения для решения задач поиска кратчайшего пути между вершинами графа на языке программирования Delphi с помощью алгоритма Дейкстры. Достоинства динамических массивов, понятия теории графов, представление графов на ЭВМ.
курсовая работа, добавлен 07.06.2011Реализация последовательного алгоритма Флойда. Выделение информационных зависимостей. Масштабирование и распределение подзадач по процессорам. Инициализация параллельной программы. Сбор результирующей матрицы. Проведение вычислительных экспериментов.
лабораторная работа, добавлен 18.09.2013Суть итерационных алгоритмов разрезания графов. Выбор первого случайного разрезания с дальнейшими перестановками вершин с одного куска в другой с целью минимизации числа соединительных ребер. Итерационный алгоритм с использованием матрицы смежности.
лекция, добавлен 12.06.2016Создание динамических, управляемых данными систем представления данных, обеспечение нахождения кратчайших путей между всеми парами вершин графа. Реализация алгоритма Флойда и возможность редактирования данных. Тестирование программного продукта.
контрольная работа, добавлен 07.04.2016Основы теории графов, понятие и функции мультиграфа. Ввод размерности и матрицы весов графа из файла. Алгоритм нахождения критического пути в орграфе. Функциональное назначение и описание логической структуры программы. Ациклический ориентированный граф.
курсовая работа, добавлен 27.03.2011Представление графов по матрице смежности, инцидентности. Списки ребер, инцидентных каждой вершине. Построение минимального остовного дерева по алгоритму Прима и алгоритму Краскала. Нахождение компонента связности. Варианты обхода в ширину и в глубину.
презентация, добавлен 29.01.2015Определения и понятие теории графов. Алгоритм нахождения кратчайшего расстояния от одной из вершин графа до всех остальных, работающий только для графов без ребер отрицательного веса. Реализация алгоритма Дейкстры на языке программирования Delphi.
курсовая работа, добавлен 16.06.2014Создание виртуальной декартовой топологии. Определение размеров объектов, ввод исходных данных. Завершение процесса вычислений. Распределение данных между процессами. Начало реализации параллельного алгоритма матричного умножения. Рассылка блоков матрицы.
лабораторная работа, добавлен 18.09.2013- 19. Теория графов
Понятие о графе. Способы задания, достижимость и обратная достижимость вершин графа. Разбиение графа на подграфы. Решение задачи о максимальном потоке в графе на основе линейного программирования. Кратчайший остов графа. Задача о наименьшем покрытии.
статья, добавлен 15.01.2018 Способы распределения вычислительной нагрузки. Представление задачи в виде графа. Алгоритмы разбиения графа. Алгоритмы размещения графа на ЭВМ. Графическое представление графов. Принцип передачи данных. Синхронизация процессов и моделирование объектов.
автореферат, добавлен 18.03.2016Общая характеристика и структура предприятия. Использование теории графов для анализа сети и составление ее схемы. Нахождение минимального пути по алгоритму Краскала. Построение и структура матрицы инцидентности. Задача линейного программирования.
курсовая работа, добавлен 30.05.2014Теория графов как область дискретной математики, историческая справка, основные термины и теоремы. Описание различных задач на графах, нахождение кратчайших путей. Язык программирования Delphi. Текст программы определения кратчайшего пути в графе.
курсовая работа, добавлен 17.12.2015Теория графов и алгоритмы на графах, их наиболее широкое применение в программировании. Описание основных программных моделей. Наличие наглядной графической интерпретации состояния графа. Визуализация графов и их алгоритмов средствами Macromedia Flash.
статья, добавлен 11.03.2018Пример графа для иллюстрации понятия "кратчайший путь". Граф с официальным циклом. Иллюстрация логики алгоритма Форда-Беллмана. Работа алгоритма Е. Дейкстры. Формализованная запись логики. Пути в бесконтурном графе. Использование алгоритма Флойда.
презентация, добавлен 24.09.2017Комбинаторика, нахождение минимальных путей между вершинами графов. Понятие информационных математических моделей, сущность алгоритма. Нахождение и сортировка минимумов и максимумов в массиве. Компенсация и вычисление ранга матрицы; метод ветвей и границ.
учебное пособие, добавлен 24.10.2013