Вища математика для фахівців в галузі зв’язку

Похідна функція, її геометричний та фізичний зміст. Основні теореми про диференційовані функції. Застосовування диференціала до наближених обчислень. Інтервали опуклості та угнутості графіка функції. Застосування похідної в теорії електричних кіл.

Подобные документы

  • Означення, геометричний та механічний зміст диференціала, його основні властивості. Застосування диференціала в наближених обчисленнях значення функції та її приросту, наближене обчислення степенів, коренів, обернених чисел. Диференціали вищих порядків.

    лекция, добавлен 08.08.2014

  • Задачі, які приводять до поняття похідної. Механічний, фізичний, геометричний зміст похідної. Неперервність та диференційованість. Похідні вищих порядків явно заданої функції. Похідні вищих порядків неявно заданої функції та параметрично заданої функції.

    лекция, добавлен 08.08.2014

  • Основні теоретичні відомості: походження поняття похідної; зростання та спадання функції; найбільше та найменше значення функції; означення дотичної. Правила диференціювання; застосування похідної для розв'язування рівнянь. Текстові задачі на екстремум.

    контрольная работа, добавлен 29.04.2018

  • Походження поняття похідної. Екстремуми функції. Зростання та спадання функції. Найбільше та найменше її значення. Означення дотичної, піддотичної, нормалі. Правила диференціювання. Дослідження функції й побудова її графіка. Текстові задачі на екстремум.

    курсовая работа, добавлен 28.02.2010

  • Пояснення визначення похідної та диференціювання, їх головне значення та особливості. Похідна простих функцій та вищих порядків, розрахунок її знаходження за визначенням. Геометричний зміст функції, загальне поняття неперервності та диференційованості.

    реферат, добавлен 12.04.2014

  • Задачі, які приводять до поняття похідної, означення похідної. Диференційовність та неперервність, правила диференціювання. Похідна алгебраїчної суми диференційовних функцій та складної і оберненої функції. Диференціювання основних елементарних функцій.

    курс лекций, добавлен 22.07.2017

  • Функція, її границя та неперервність. Область визначення функції та її геометричний зміст. Похідна та диференціали функцій багатьох змінних. Теорема рівності других мішаних похідних. Означення частинної похідної функції двох змінних по одній з них.

    лекция, добавлен 08.08.2014

  • Викладення диференціального числення функцій однієї змінної: означення похідної; геометричний, механічний і економічний змісти похідної; доведення формул диференціювання; похідні вищих порядків; диференціал функції; теореми диференціального числення.

    курс лекций, добавлен 30.04.2014

  • Мішана частинна похідної. Лінія рівня як множина точок (х, у) площини 0ху, у яких функція набуває одного й того ж значення. Точки розриву та їх порушення в умовах неперервності функції. Частинні похідні першого порядку. Правила і формули диференціювання.

    контрольная работа, добавлен 24.03.2015

  • Зростання і спадання функцій. Правила логарифмічного диференціювання. Схема дослідження функцій. Опуклість і угнутість кривої, точки перегину. Максимуми і мінімуми функції. Найбільше і найменше значення функції на відрізку. Асимптоти графіка функції.

    курсовая работа, добавлен 19.07.2017

  • Сутність та візуалізація похідної у різних реалізаціях: для функції однієї, кількох змінних, вектор-функцій, дійсної, комплексних змінних. Означення похідної як границі частки приросту функції до приросту аргументу функції, способи її зображення.

    статья, добавлен 27.04.2023

  • Відомості з історії про походження термінів і позначень у розділі математики, у якому вивчаються диференціальні числення. Поняття похідної, основні її елементарні функції, правила диференціювання. Похідні вищих порядків та правила їх знаходження.

    лекция, добавлен 26.01.2014

  • Поняття обмеженості l-індексу аналітичної в довільній комплексній області функції. Зв'язок між обмеженістю l-індексу похідної та обмеженістю l-розподілу значень функції. Застосування в теорії розподілу значень і диференціальних рівнянь. Теорема Хеймана.

    автореферат, добавлен 24.06.2014

  • Монотонність, локальний екстремум функції. Найбільше і найменше значення функції. Окупність, вгнутість кривих. Точки перегину. Асимптоти кривої графіка функції. Загальна схема дослідження функції та побудова графіків. Достатні умови строгої монотонності.

    лекция, добавлен 08.08.2014

  • Огляд досліджень субгармонічних функцій. Теореми про рівномірну неперервність. Зв’язок між різними видами збіжності послідовностей субгармонічних функцій. Загальні теореми про граничні множини Азаріна. Субгармонійні функції з нерегулярним зростанням.

    автореферат, добавлен 14.09.2015

  • Представлення симетрії осей функції певного вигляду. Паралельне перенесення уздовж осі OX на одиницю графіка. Умови перетворення графіка функції для симетричного відображення осі OY. Умови симетричності геометричних координат функції при її перетворенні.

    презентация, добавлен 06.10.2014

  • Поняття про границі функції: числова послідовність, нескінченно великі змінні величини, границя функції в точці, нескінченно малі величини, їхні властивості. Основні теореми про границі. Обчислення границі функції: розкриття невизначеностей границь.

    лекция, добавлен 08.08.2014

  • Визначення квадратичної функції та значення незалежної змінної. Особливості побудови графіка функції, який складається з безлічі крапок на координатній площині, абсциси яких дорівнюють значенням аргументу, а ординати - відповідним значенням функції.

    презентация, добавлен 20.11.2013

  • Поняття, позначення і способи завдання функції. Побудова графіків функції, система координат статичного графіка функції. Логарифмічні числа, натуральний і десятковий логарифми, логарифмічна безліч. Тригонометричні функції круга і числового елементу.

    учебное пособие, добавлен 27.11.2013

  • Загальна характеристика використання методів математичного аналізу в медико-біологічній практиці. Розгляд функції та її похідних. Застосування диференціалу для наближених розрахунків. Основи інтегрального числення. Поняття про диференціальні рівняння.

    учебное пособие, добавлен 17.11.2015

  • Особливості трактування основних понять та розрахунку граничних теорем для схеми Бернуллі. Характеристика особливостей побудови графіка до функції Лапласа. Сутність теореми Бернуллі про стійкість відносних частот та ймовірності появи випадкових частот.

    контрольная работа, добавлен 12.11.2012

  • Аналіз існуючих методів знаходження першої функції похідної для випадків рівновіддалених та нерівновіддалених значень аргументу. Розробка алгоритму та програми чисельного диференціювання функції з використанням формули Гауса в середовищі Borland C++.

    курсовая работа, добавлен 17.12.2014

  • Функції багатьох змінних: поняття, область визначення, неперервність. Інтегральне числення функції кількох змінних. Практичне обчислення подвійного та потрійного інтегралів в декартовій та полярній системах координат та визначення його властивостей.

    курс лекций, добавлен 13.09.2009

  • Означення квадратичної функції. Порядок знаходження координат вершин параболи та нулів функції. Визначення напряму віток та виконання побудови графіка квадратичної функції. Її властивості, проміжки зростання та спадання, найбільше та найменше значення.

    презентация, добавлен 12.05.2016

  • Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.

    дипломная работа, добавлен 29.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.