Анализ данных в линейной регрессионной модели

Статистическое описание и выборочные характеристики двумерного случайного вектора. Предмет линейного регрессионного анализа. Особенности однофакторного дисперсионного анализа. Уравнение выборочной линейной регрессии. Выборочное значение статистики.

Подобные документы

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Построение диаграммы рассеяния. Однофакторный дисперсионный анализ. Определение линейного контраста и выборочной линейной регрессии. Расчет границ доверительного интервала.

    контрольная работа, добавлен 16.10.2017

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Построение диаграммы рассеяния и нанесение на нее уравнения регрессии. Особенности применения однофакторного дисперсионного анализа.

    контрольная работа, добавлен 21.10.2017

  • 3адача определения закона распределения случайной величины или системы случайных величин по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Применение однофакторного дисперсионного анализа.

    курсовая работа, добавлен 21.10.2017

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Границы доверительных интервалов для дисперсии ошибок наблюдений. Построение диаграммы рассеяния, квантиль распределения Фишера.

    курсовая работа, добавлен 16.10.2017

  • Изучение математических законов теории вероятностей. 3адача определения закона распределения случайной величины по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Выборочная линейная регрессия.

    курсовая работа, добавлен 18.10.2017

  • 3адача определения закона распределения случайной величины по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Задача нахождения неизвестных параметров распределения, проверки правдоподобия гипотез.

    курсовая работа, добавлен 21.10.2017

  • Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.

    курсовая работа, добавлен 13.10.2017

  • 3адача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Задача нахождения неизвестных параметров распределения.

    курсовая работа, добавлен 21.10.2017

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Характеристика моделей дисперсионного анализа с фиксированными уровнями факторов. Анализ статистических данных. Определение среднего арифметического урожайности. Рассмотрение схемы однофакторного дисперсионного анализа. Изучение метода нулевых гипотез.

    контрольная работа, добавлен 19.04.2015

  • Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.

    краткое изложение, добавлен 17.03.2015

  • Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.

    контрольная работа, добавлен 12.01.2015

  • Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.

    курсовая работа, добавлен 12.12.2014

  • Дисперсионный анализ в математической статистике как самостоятельный инструмент статистического анализа, его понятие и применение в эконометрике как вспомогательного средства для изучения качества регрессионной модели. Линейный коэффициент корреляции.

    лекция, добавлен 25.04.2015

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.

    контрольная работа, добавлен 23.05.2015

  • Основные понятия математической статистики, ее виды и их характеристики. Анализ экономической информации с помощью однофакторного дисперсионного анализа на примере города. Вычисление статистик, гипотез или выводов по существу эмпирических данных.

    курсовая работа, добавлен 08.01.2014

  • Построение диаграммы рассеивания с нанесенной на нее сеткой для группировки данных. Проверка заданной гипотезы об отсутствии линейной статистической связи между компонентами. Получение интервальной оценки для истинного значения коэффициента корреляции.

    курсовая работа, добавлен 05.11.2011

  • Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.

    контрольная работа, добавлен 09.01.2017

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Задача корреляционного анализа и уравнение регрессии. Особенности и этапы проведения регрессионного анализа. Определение функции и оценка неизвестных значений. Границы доверительных интервалов. Этапы и технология работы с пакетом анализа "Регрессия".

    презентация, добавлен 18.12.2012

  • Определение понятия дисперсионного анализа. Создания выборок и проверка нормальности распределения результативного признака. Описание методов однофакторного дисперсионного анализа для несвязанных и связанных выборок, их графическое представление.

    курсовая работа, добавлен 12.10.2016

  • Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.

    курс лекций, добавлен 27.10.2015

  • Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.

    презентация, добавлен 20.01.2015

  • Ознакомление с условиями поиска полиномиальной регрессионной математической модели. Вычисления для линейной РОФМ. Формульное определение критериев выделяющегося максимального значения. Промежуточные показатели при расчетах коэффициентов регрессии.

    методичка, добавлен 08.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.