Лекции по математической статистике
Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.
Подобные документы
Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.
контрольная работа, добавлен 09.07.2011Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
реферат, добавлен 26.04.2015Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.
курсовая работа, добавлен 21.04.2015Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.
практическая работа, добавлен 28.03.2020Вектор оценок параметров регрессионного уравнения. Классическая оценка ковариационной матрицы метода наименьших квадратов, оценка параметров. Разработка программного обеспечения. Дисперсия ошибки. Однородные группы наблюдений, формула Стерджесса.
статья, добавлен 02.02.2019Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
курсовая работа, добавлен 29.08.2014Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.
контрольная работа, добавлен 10.06.2011Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.
курсовая работа, добавлен 15.05.2013Понятие математической статистики, её предназначение и задачи. Распределение выборки, геометрическое представление выборки. Статистические критерии согласия. Характеристика интервального оценивания. Линейная регрессия и расчет выборочной ковариации.
лекция, добавлен 21.03.2018Характеристическая функция суммы независимых случайных величин. Центральная предельная теорема. Закон больших чисел в форме Бернулли. Основные задачи математической статистики. Группировка данных по интервалам, определение частот элементов выборки.
лекция, добавлен 28.09.2017Выборка, основные задачи математической статистики. Различные эмпирические функции распределения. Выборочные характеристики случайной величины. Примеры параметрических семейств распределений. Оценивание неизвестных параметров. Методы получения оценок.
контрольная работа, добавлен 19.03.2015Характеристика понятия и сущности методики оценки параметров распределения, проверки гипотез, изучение системы случайных величин: корреляции, регрессии. Анализ особенностей статистического оценивания. Характеристика выборочного коэффициента корреляции.
курсовая работа, добавлен 21.09.2017Классическая конструкция вероятности. Определение математического ожидания, среднего квадратического отклонения, плотности распределения случайной величины. Проверка статистических гипотез. Построение доверительного интервала. Ковариация и регрессия.
контрольная работа, добавлен 07.10.2015Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Рассмотрение сущности метода наименьших квадратов и линейной парной регрессии. Вывод формул для нахождения коэффициентов линейной парной регрессии. Аппроксимация функций с помощью метода наименьших квадратов. Нахождение параметров линейной функции.
курсовая работа, добавлен 26.02.2020Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.
учебное пособие, добавлен 22.06.2014Основные понятия математической статистики и их использование в экспериментальных психологических исследованиях. Параметрические критерии проверки статистических гипотез. Характеристика однофакторного дисперсионного анализа для несвязанных выборок.
учебное пособие, добавлен 19.11.2016Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015Определение сущности методов математической статистики в аналитической химии. Характеристика элементов математической статистики, используемых при обработке результатов измерений. Расчет дисперсии и среднего арифметического для выборки из результатов.
реферат, добавлен 16.03.2015Определение интервальных статистических рядов распределения частот, составление эмпирических функций распределения, анализ числовых характеристик выборки. Изучение методики проверки статистических гипотез. Анализ метода наименьших квадратов в статистике.
методичка, добавлен 06.05.2015Рассмотрен метод наименьших квадратов - метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от экспериментальных входных данных. Практическое решение задачи методом наименьших квадратов.
курсовая работа, добавлен 06.12.2023