Спецификация эконометрической модели множественной регрессии
Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
Подобные документы
Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012- 2. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.
контрольная работа, добавлен 03.01.2012Уравнение зависимости объема предложения блага от цены этого блага и зарплаты сотрудников фирмы. Линейная модель множественной регрессии данных, расчёт автокорреляции остатков с помощью теста Дарбина-Уотсона. Уравнение регрессии с фиктивными переменными.
контрольная работа, добавлен 27.04.2013Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
лабораторная работа, добавлен 18.09.2012Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.
презентация, добавлен 05.10.2015Применение фиктивных переменных в моделях множественной регрессии. Использование фиктивных переменных в моделях с временными рядами. Введение качественных факторов в регрессионную модель. Способ преобразования качественных переменных в количественные.
контрольная работа, добавлен 01.03.2016Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
шпаргалка, добавлен 25.02.2014Множественные регрессионные модели. Использование множественной регрессии в решении проблем спроса, изучении доходности акций, изучении функции издержек производства, в макроэкономических расчетах. Выбор вида уравнения регрессии как спецификация модели.
презентация, добавлен 12.07.2015Особенности эконометрического моделирования стоимости квартир. Порядок построения классической линейной модели множественной регрессии. Анализ показателей: индекса корреляции и детерминации, F-критерий Фишера. Оценка матрици на мультиколлинеарность.
контрольная работа, добавлен 12.01.2014Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.
контрольная работа, добавлен 28.04.2016Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.
реферат, добавлен 25.04.2015Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
статья, добавлен 23.01.2019Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.
задача, добавлен 16.03.2014Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015Кредит как объект экономического исследования. Построение и анализ множественной эконометрической модели. Оценка параметров множественной линейной эконометрической модели с использованием парных коэффициентов корреляции. Анализ модели и оценка параметров.
курсовая работа, добавлен 16.05.2011Уравнение линейной парной регрессии одного признака от другого. Расчет линейного коэффициента парной корреляции и коэффициента детерминации. Уравнение множественной регрессии, выбор факторов. Автокорреляция уровней временного ряда, его структура.
контрольная работа, добавлен 21.01.2013Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.
курс лекций, добавлен 10.04.2010