Эконометрические методы прогнозирования
Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.
Подобные документы
Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Методы определения вероятности и их сущность. Математическое ожидание и теоремы связанные с ним. Понятие о дисперсии, среднеквадратичном отклонении и моментах случайной величины. Корреляционная зависимость, функция регрессии, коэффициент корреляции.
методичка, добавлен 16.03.2017Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Построение поля корреляции, уравнения линейной и степенной парной регрессии. Расчет значения спроса, его квадратичного отклонения и коэффициентов автокорреляции. Выполнение сглаживания временного ряда методом скользящих средних с интервалом сглаживания.
контрольная работа, добавлен 30.12.2010Критические значения коэффициента парной корреляции. Планирование многофакторного эксперимента. Проверка однородности дисперсии и равноточности измерения в разных сериях. Показатели уравнения регрессии. Методы рациональной организации исследований.
курсовая работа, добавлен 24.02.2014Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.
курсовая работа, добавлен 13.10.2017Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
лабораторная работа, добавлен 06.10.2016Определение среднего значения исследуемого параметра для каждой точки факторного пространства. Проверка гипотезы однородности дисперсий по критерию Корхена. Значения коэффициентов уравнения регрессии. Проверка адекватности математической модели.
курсовая работа, добавлен 03.11.2020Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.
курсовая работа, добавлен 06.08.2013Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
реферат, добавлен 08.02.2018Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.
статья, добавлен 24.02.2019Особенности методики построения корреляционной таблицы, вычисление с ее помощью параметров уравнения. Определение параболической регрессии по формуле Крамера. Оценка надежности корреляционного отношения, вариация факторного и результативного признака.
курсовая работа, добавлен 14.04.2015Рассмотрение задачи оценки параметров нелинейной регрессии при отсутствии априорной информации о линейно входящих параметрах. Проблема обеспечения оценивания параметров сходимости алгоритма за приемлемое количество итераций в нелинейных задачах.
статья, добавлен 25.02.2013Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.
презентация, добавлен 05.06.2012Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.
контрольная работа, добавлен 29.12.2011Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.
контрольная работа, добавлен 23.04.2014Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.
лабораторная работа, добавлен 01.11.2023Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.
статья, добавлен 27.11.2018Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Определение вероятности случайного события. Закон распределения случайной величины и расчет числовых характеристик (математического ожидания и дисперсии). Точечные оценки математического ожидания. Оценка коэффициента корреляции, расчет линейной регрессии.
контрольная работа, добавлен 26.10.2014Квантили нормального распределения и распределения Стьюдента. Группированный и ранжированный ряд случайной величины. Полигон относительных частот. График эмпирической функции распределения. Доверительный интервал для дисперсии, построение линии регрессии.
контрольная работа, добавлен 19.07.2015Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.
контрольная работа, добавлен 11.04.2016Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.
контрольная работа, добавлен 17.05.2019