Некоторые специальные методы оценивания параметров линейных моделей
Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
Подобные документы
Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.
реферат, добавлен 10.10.2012Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.
реферат, добавлен 24.09.2015Рассмотрение модели линейной регрессии. Ознакомление с содержанием стандартного метода наибольшего правдоподобия. Получение трехдиагональной обратной матрицы при помощи гауссового исключения. Получение окончательной несмещенной оценки дисперсии.
реферат, добавлен 26.06.2018Применение метода наименьших квадратов как способа регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Парная линейная регрессия и системы одновременных уравнений. Авторегрессионное преобразование.
реферат, добавлен 17.10.2012Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Трендовая модель экономической динамики. Использование для нахождения параметров модели либо метода наименьших квадратов, либо матричной записи.
контрольная работа, добавлен 13.06.2009Базовые понятия и задачи эконометрики. Основные этапы эконометрических исследований. Применение интервальной оценки в практическом статистическом анализе. Расчет параметров нелинейных регрессионных моделей. Условия применения метода наименьших квадратов.
презентация, добавлен 12.05.2014Основные задачи и предпосылки применения корреляционно-регрессионного анализа. Методы определения направления связи, ее характера. Парная регрессия на основе метода наименьших квадратов и метода группировок. Принятие решений на основе уравнения регрессии.
контрольная работа, добавлен 16.04.2016Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.
лабораторная работа, добавлен 06.02.2015Построение доверительных интервалов для коэффициентов линейной регрессии и дисперсии ошибок. Проведение процедуры пошагового отбора переменных. Проверка обратного движения на мультиколлинеарность при помощи VIF. Расчет параметров автокорреляции.
курсовая работа, добавлен 01.10.2017Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.
контрольная работа, добавлен 03.01.2012Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.
контрольная работа, добавлен 01.06.2020Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.
реферат, добавлен 24.12.2011Главная особенность двухшагового и косвенного методов наименьших квадратов в моделировании. Анализ получения состоятельных оценок и параметров моделей из линейных одновременных уравнений. Основная характеристика проблемы идентификации уравновешивания.
презентация, добавлен 18.01.2015Классификация эконометрических моделей. Использование метода наименьших квадратов для нахождения параметров. Описание тренда и интервенции временного ряда. Построение модели стоимости обучения в высшем учебном заведении. Проведение анализа рынка квартир.
контрольная работа, добавлен 17.02.2014Использование регрессионного анализа в физико-химических исследованиях. Обработка экспериментальных результатов методом наименьших квадратов. Определение коэффициентов уравнений регрессии при аппроксимации данных полиномами первой и второй степени.
контрольная работа, добавлен 10.12.2015Линейные и нелинейные модели парной регрессии и корреляции. Свойства оценок на основе метода наименьших квадратов. Анализ системы эконометрических уравнений. Характеристика структурной и приведенной форм. Суть автокорреляции уровней временного ряда.
лекция, добавлен 10.06.2014Порядок построения диаграммы рассеивания. Расчет таблицы однофакторного дисперсионного анализа. Определение критического значения распределения Фишера. Вычисление несмещенной оценки остаточной дисперсии и стандартных ошибок коэффициентов регрессии.
контрольная работа, добавлен 25.02.2015Составление уравнения регрессии с применением метода наименьших квадратов. Оценка достоверности полученного уравнения с использованием корреляционного анализа. Расчет среднеквадратичного отклонения, коэффициентов парной детерминации и корреляции.
задача, добавлен 19.04.2017Сущность регрессионного анализа. Методы определения вида регрессионных уравнений и их параметров, наименьших квадратов. График изменения видового числа древостоя ели в зависимости от средней высоты. Регрессия длины корней на длину стволиков всходов сосны.
контрольная работа, добавлен 29.03.2018Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Особенности прогнозирования спроса на товары длительного пользования. Метод математического моделирования. Использование метода наименьших квадратов для идентификации параметров системы. Применение моделей кривых роста в экономическом прогрессе.
дипломная работа, добавлен 30.10.2017Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.
лекция, добавлен 29.09.2013Рассмотрение особенностей методологии выбора факторов при построении эконометрической модели. Изучение процесса расчета коэффициентов многофакторных эконометрических моделей при помощи метода наименьших квадратов. Определение коэффициентов эластичности.
презентация, добавлен 04.04.2023Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.
лабораторная работа, добавлен 05.05.2016