Аппроксимация и оптимизация липшицевых функций

Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.

Подобные документы

  • Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.

    лекция, добавлен 14.05.2013

  • Разработка и обоснование новых и эффективных методов глобальной минимизации некоторых специальных классов негладких функций на выпуклых множествах. Разработка метода нахождения минимума негладкой выпуклой функции многих переменных на симплексе.

    автореферат, добавлен 30.06.2018

  • Постановка задачи одномерной минимизации и классификация одномерных функций. Алгоритм Свенна для поиска интервала унимодальности. Разработка алгоритма последовательной квадратичной аппроксимации. Расчет коэффициентов аппроксимации в Microsoft Excel.

    курсовая работа, добавлен 19.06.2014

  • Полиномы Лежандра и Чебышева: отогональность полиномов и их формирование. Ортогональная система функций, построенная на основе полиномов Чебышева, нормирование системы функций, построенной на их основе. Примеры аппроксимации функций в среде MathCad'а.

    курсовая работа, добавлен 09.06.2012

  • Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.

    статья, добавлен 29.01.2019

  • Определение критериев выпуклости и вогнутости функций. Задачи безусловной оптимизации и необходимые условия оптимальности. Рассмотрение задачи с ограничениями-неравенствами. Рассмотрение сущности множителей Лагранжа и условий дополняющей нежесткости.

    лекция, добавлен 06.09.2017

  • Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).

    контрольная работа, добавлен 25.04.2015

  • Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    дипломная работа, добавлен 24.05.2018

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Определение основных видов функций, изучение их свойств. Использование аналитического и графического методов задания функций при нахождении ограничений снизу и сверху на множестве; точек максимума и минимума; вычислении наименьшего и наибольшего значений.

    реферат, добавлен 05.10.2009

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Построение математических моделей и разработка эффективных алгоритмов решения взаимозависимого класса оптимизационных задач добычи, транспорта и переработки газа. Формирование математических методов и программных комплексов диагностики и мониторинга.

    автореферат, добавлен 15.02.2018

  • Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.

    методичка, добавлен 15.11.2014

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.

    реферат, добавлен 04.12.2014

  • Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.

    контрольная работа, добавлен 02.11.2010

  • Изучение направлений при проектировании дискретных преобразователей. Исследование булевых функций от четырех аргументов, их минимизация и оценка сложности. Решение задач, построение библиотеки близких формул для булевых функций от четырех аргументов.

    статья, добавлен 28.01.2019

  • Построение таблицы истинности. СДНФ и СКНФ. Применение метод Квайна - Мак-Класки и метод Петрика, карт Карно. Факторизация и декомпозиция. Использование методов минимизации булевых функций с дальнейшим построением комбинационных схем на их основе.

    курсовая работа, добавлен 03.01.2022

  • Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.

    статья, добавлен 01.02.2019

  • Неотрицательная нетривиальная и равная нулю линейная комбинация градиентов тех функций, которые определяют активные ограничения в исследуемой точке. Необходимые и достаточные условия Куна-Таккера. Условия регулярности и задачи со смешанными ограничениями.

    лекция, добавлен 06.09.2017

  • Гармонические колебания (гармоники) и их характеристика. Основная система тригонометрических функций. Тригонометрический ряд Фурье, его особенности для четных и нечетных функций, достаточные условия сходимости. Ряд Фурье в комплексной форме, его интеграл.

    презентация, добавлен 26.09.2017

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Кинематические и динамические обратные задачи сейсморазведки. Вероятность схождения градиентных методов к глобальному экстремуму. Применение аппроксимации в методе дифференциальной эволюции. Использование параллельных вычислений в методах оптимизации.

    дипломная работа, добавлен 31.01.2019

  • Построение в прямоугольной системе координат заданного треугольника. Нахождение внутреннего угла треугольника. Составление уравнения медианы и уравнения высоты. Вычисление производных заданных функций. Исследование заданных функций, построение графика.

    контрольная работа, добавлен 19.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.