Принцип максимума
Анализ практических задач оптимизации объектов управления. Определение понятия игольчатой вариации. Примеры основных уравнений и их применения для синтеза оптимальных систем. Характеристика сущности принципа максимума. Пример решения уравнения состояния.
Подобные документы
Рассмотрение задач векторной оптимизации при векторном критерии и при обобщенном функционале, соответствующем векторному критерию. Решение задач векторной оптимизации статики нелинейных объектов. Применение типовых методов синтеза оптимальных управлений.
лекция, добавлен 23.07.2015Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012Анализ сущности и свойств тригонометрических и обратных тригонометрических функций. Характеристика основных методов решения элементарных тригонометрических уравнений, а также примеры решения нестандартных тригонометрических уравнений и неравенств.
курсовая работа, добавлен 09.11.2017Основные достижения в области методов решения оптимизационных задач. Теоретические основы математического аппарата поиска оптимума. Определение значения принципа максимума и динамического программирования в области задач оптимального управления.
реферат, добавлен 13.06.2019Теорема объединенного принципа максимума, проведение качественного анализа поверхности эллипсоида. Характеристика динамической системы, движение которой подчиняется принципу Гамильтона-Остроградского. Оценки конструктивных параметров, траектории движения.
контрольная работа, добавлен 28.05.2017Общая задача управления. Функция Гамильтона. Дифференциальные уравнения для фазовых координат. Интерпретация сопряженных переменных. Чувствительность оптимального значения целевого функционала к изменению начального момента времени и фазового состояния.
презентация, добавлен 21.08.2015Основные понятия и утверждения иррациональных уравнений, базовые принципы их решения. Теоремы о равносильности преобразований. Примеры общих классов иррациональных уравнений. Разработка и пример решения системы упражнений на каждый класс уравнений.
курсовая работа, добавлен 05.05.2014Задача линейного программирования. Определение максимума и минимума значения функции. Система линейных ограничений. Этапы решения задачи графическим методом. Универсальный метод решения систем линейных уравнений. Алгоритм двойственного симплекс-метода.
контрольная работа, добавлен 30.04.2013Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Определение понятия "функциональное уравнение". Методы решения функциональных уравнений и их систем. Роль и актуальность изучения функциональных уравнений в школьном курсе математики. Разработка сборника задач для использования математическими классами.
курсовая работа, добавлен 20.05.2017Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
курсовая работа, добавлен 22.04.2011Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.
реферат, добавлен 31.10.2013Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Определение сущности квадратного уравнения и его видов. Характеристика различных способов решения квадратных уравнений: по формуле, с использованием теоремы Виета и номограммы. Ознакомление с основными свойствами коэффициентов квадратного уравнения.
контрольная работа, добавлен 17.12.2014Особенности решения задач по расчету процентных денег методом простых и сложных процентов. Линейное уравнение как простейший пример диофантова уравнения. Использование алгебраических уравнений и их систем, решение задач методом линейного программирования.
контрольная работа, добавлен 19.04.2015Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Анализ сущности синтеза систем автоматического управления как определения состава, структуры системы, параметров ее устройств и технических средств реализации. Изучение методов синтеза, процесса создания, схемы синтеза систем автоматического управления.
реферат, добавлен 23.07.2015Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.
реферат, добавлен 09.02.2009Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.
курсовая работа, добавлен 13.03.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.
дипломная работа, добавлен 20.05.2018Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009